
Graph Transformation and

Pointer Structures

Mike Dodds

Submitted for the degree of

Doctor of Philosophy

The University of York

Department of Computer Science

September 2008

Abstract

This thesis is concerned with the use of graph-transformation rules to specify

and manipulate pointer structures. In it, we show that graph transformation

can form the basis of a practical and well-formalised approach to specifying

pointer properties. We also show that graph transformation rules can be

used as an efficient mechanism for checking the properties of graphs.

We make context-sensitive graph transformation rules more practical for

specifying structures, by improving their worst-case application time. We

define syntactic conditions ensuring faster application of rules, and we show

how these conditions improve the application time of sequences of rules. We

apply these fast graph transformation systems to the problem of recognising

graph languages in linear time, and show that several interesting context-

sensitive languages can be recognised using this approach.

We examine the relationship between pointer specification using context-

free graph transformation and separation logic, an alternative approach to

reasoning about pointers. We show that formulas in a fragment of separa-

tion logic can be translated into a restricted class of hyperedge replacement

grammars, and vice versa, showing that these two approaches are of equiva-

lent power. This means that our fragment inherits the formal properties of

hyperedge-replacement grammars, such as inexpressibility results. We show

that several operators of full separation logic cannot be expressed using

hyperedge replacement.

We define a C-like language that uses graph transformation rules to

ensure pointer safety. This language includes graph transformation con-

structs for defining and rewriting pointer structures. These constructs can

be statically checked for shape safety by modelling them as graph transfor-

mation rules. We give both an abstract graph-transformation semantics and

a concrete executable semantics for our new constructs, and prove that the

semantics correspond.

1

Contents

I Introduction and preliminaries 13

1 Introduction 14

1.1 Background and motivation 15

1.2 Contribution . 18

1.3 Thesis structure . 21

1.4 Publication history . 22

2 Preliminaries 23

2.1 Graphs and morphisms . 23

2.2 Double-pushout graph rewriting 26

2.3 Hyperedge-replacement graph rewriting 29

2.4 Graph signatures . 32

II Fast graph transformation and recognition 36

3 Fast graph transformation 37

3.1 The problems of graph transformation 38

3.2 Fast left-connected graph transformation 42

3.3 Fast rooted graph transformation 50

3.4 Multi-step graph transformation 54

4 Efficient graph recognition 65

4.1 Recognition by rooted reduction 66

4.2 Non-context-free RGRS languages 76

4.3 Recognition by left-connected reduction 91

4.4 Comparison between LGRSs and RGRSs 95

4.5 Developing and validating GRSs 96

2

5 Other approaches tofast graph transformation 99

5.1 Efficient direct derivations . 99

5.2 Efficient multi-step derivation 101

5.3 Efficient recognition and special reduction systems 103

III Graph grammars and separation logic 108

6 Semantics of formulas and grammars 109

6.1 Separation logic syntax and semantics 111

6.2 Flattening separation logic formulas 122

6.3 Heap-graphs and mapping between domains 127

6.4 Heap-graph grammars and source normalisation 129

7 Mapping between formulas and grammars 137

7.1 Intuitive relationship . 137

7.2 Mapping from formulas to grammars 139

7.3 Proving the correctness of mapping g 145

7.4 Mapping from grammars to formulas 156

7.5 Proving the correctness of mapping s 158

8 Consequences and limitations 164

8.1 Inexpressible separation logic operators 164

8.2 Extending the heap model . 169

8.3 Consequences of the correspondence 171

8.4 Other related work . 175

IV A language for shape safety 176

9 CGRS: A language for shape safety 177

9.1 Safe pointers by graph transformation 178

9.2 CGRS: a language for safe pointers 182

9.3 Example: tree insertion and rebalancing 193

9.4 Code size in CGRS . 201

10 Semantics of CGRS and shape safety 205

10.1 Extraction of GRSs and rules from CGRS 205

10.2 Translating CGRS to C . 208

3

10.3 Syntax and semantics of µC 221

10.4 Translating from memory states to graphs 229

10.5 Correctness of translations . 234

10.6 Shape safety guarantees in CGRS 242

10.7 Implementing and optimising CGRS 244

11 Other approaches to shape safety 245

11.1 Shape types and structured gamma 245

11.2 Specifying structures using logic 246

11.3 Shape analysis . 249

11.4 Specifying structures by graph transformation 252

V Conclusion 255

12 Conclusions and further work 256

12.1 Thesis summary . 256

12.2 Further work . 260

A Balanced binary trees are not MS-expressible 264

Bibliography 267

4

List of Figures

2.1 Commutative diagrams defining a pushout. 26

2.2 Commutative diagrams defining pullback. 26

2.3 Two pushouts defining a derivation. 27

3.1 Rooted rule removing an element from a linked list. 52

4.1 RGRS CL for rooted cyclic lists. 70

4.2 Balanced binary tree. 76

4.3 Accepting graph and rules for the rooted GRS RBB. 79

4.4 Accepting graph and rules for the rooted GRS RBB (cont). . 80

4.5 Example reduction sequence for a member of L(RBB). 81

4.6 BBT including three root-pointer-predecessors. 82

4.7 Rooted grid. 85

4.8 Grid RGRS rules and accepting graph. 86

4.9 Rooted binary DAG. 87

4.10 Linear RGRS recognising rooted binary DAGs. 89

4.11 Rules and accepting graph for LGRS BB. 94

5.1 A special reduction system for Stars. 105

6.1 Simple heaps illustrating separation logic satisfaction. 114

6.2 Definition of satisfaction for separation logic. 117

6.3 Flattening function flat . 124

6.4 Rewriting function lift . 125

6.5 Heap and corresponding heap-graph 129

6.6 Grammar producing non-heap graphs. 130

7.1 Mapping from formulas to grammars. 143

7.2 Transforming a predicate into a grammar. 146

5

7.3 Transforming a predicate into a grammar (cont). 147

7.4 Mapping from grammars to formulas. 157

7.5 Transforming a grammar into a formula. 159

8.1 Definition of satisfaction for omitted operators. 165

9.1 Rooted GRS defining the language of binary trees. 180

9.2 Graph transformation rule Insert. 181

9.3 Syntax for signatures and shapes. 186

9.4 CGRS signature and shape declarations. 188

9.5 Syntax for transformers and reducers. 189

9.6 Textual syntax for transformer functions. 192

9.7 Reducer branchleaf. 194

9.8 Unbalanced tree with AVL labels 195

9.9 GRS for unbalanced trees with AVL labels. 196

9.10 Balanced AVL tree with stack. 196

9.11 Signature and shape declarations for the avl shape. 197

9.12 Transformer rup and corresponding rule 199

9.13 Transformer rdouble and corresponding rule 200

9.14 Transformer relim and corresponding rule 201

9.15 Transformer rsingle and corresponding rule 202

10.1 Transformer tree insert and corresponding rule. 208

10.2 Translation to C types for CGRS signatures and types. 210

10.3 Source code produced from bin and tree. 211

10.4 Translation to C for CGRS shapes. 214

10.5 Translation from CGRS to C for transformers. 217

10.6 Source code produced from tree goleft. 218

10.7 Abstract syntax of µC. 222

10.8 SOS semantics of µC control flow. 226

10.9 SOS semantics of µC assignment and dereferencing. 227

10.10SOS semantics of µC memory handling. 229

10.11Large σ-structure . 232

10.12Correctness requirement for translation function. 236

11.1 Graph type for a doubly-linked list node. 247

6

Index of Definitions

WS, 133

WS′, 133

example, 134

WS0, 133

C-preserving, 29

Σ-rule, 34

example, 35

Σσ, 206

example, 207
•, 165

example, 166
◦, 166

example, 166

α, 128

example, 129

αt, 141

example, 141

βσ, 233

example, 233

⊲⊳, 141

example, 141

κ, 148

example, 148

≤p, 118

example, 118

⌊−⌋, 131

L
′
R, 95

LL, 95

LR, 95

µC state, 224

µC type schema, 223

µC type schema

example, 224

⇀, 25

σ node-pair, 230

example, 231

σ-schema, 230

example, 230

σ-structure, 231

example, 231

⇓, 140

example, 140

̺-rooted Σ-rule, 67

example, 67

flat, 124

example, 124

lift, 124

example, 124

abstract declaration, 206

example, 206

attachment node, 29

balanced binary tree, 76

example, 76

branching factor, 46

example, 46

C-like rooted graph, 183

example, 183

7

C-like rooted rule, 183

example, 183

compatible predicate, 132

example, 133

complete binary tree, 104

Condition 1, 48

Condition 2, 48

Condition 3, 49

Condition R1, 53

Condition R2, 53

Condition R3, 54

confluence, 71

example, 72

connected component, 24

connected graph, 24

connected nodes, 24

correspondence, 150

example, 150

corresponding graph signature, 206

example, 207

dangling condition, 27

dangling location, 112

degree, 23

derivation (double-pushout), 27

example, 28

derivation (hyperedge replacement),

30

descendant edge, 74

example, 74

descendant node, 74

example, 74

direct derivation (double-pushout), 27

direct derivation (hyperedge replace-

ment), 30

edge, 23

edge enumeration, 43

example, 43

equation system, 149

example, 149

expose, 142

example, 142

external node, 29

fast Σ-rule, 91

example, 91

flat formula, 122

example, 122

graph, 23

example, 24

graph class, 29

graph environment, 148

example, 148

graph evaluation, 148

example, 148

graph matching problem, 42

graph morphism, 25

example, 25

graph properties, 24

example, 24

graph reduction specification, 179

example, 180

graph signature, 33

example, 33

GRS type, 178

handle, 29

heap, 112

example, 112

heap fusion, 117

example, 118

heap-graph, 128

8

example, 128

heap-graph grammar, 129

HR grammar, 31

hyperedge, 29

hyperedge replacement, 30

example, 31

hyperedge replacement grammar, 31

example, 32

hypergraph, 29

example, 30

image (heap), 112

in-degree, 23

inclusion, 25

initial graph, 31

injective morphism, 25

interface graph, 26

inverse (rule), 26

irreducible, 27

isomorphic, 25

join, 141

example, 141

label alphabet, 23

language (hyperedge replacement), 31

language family, 31

left-connected graph reduction spec-

ification (LGRS), 92

left-connected rule, 42

left-hand side, 26

LGRS recognition problem, 92

linear LGRS, 92

example, 93

linear RGRS, 71

example, 71

matching morphism, 27

morphism correspondence, 237

example, 237

morphism extension, 43

example, 44

multi-step graph transformation prob-

lem, 55

natural pushout, 26

node (graph), 23

node (hypergraph), 29

node-pair, 230

example, 231

out-degree, 23

partial morphism, 25

polynomially terminating GRS, 179

example, 180

predicate interpretation, 116

example, 116

preserves undefinedness, 25

production, 30

projection (hyperedge), 132

pullback, 26

pushout, 26

reachable node, 24

replacement, 30

result morphism, 27

RGRS recognition problem, 69

right-hand side, 26

root label, 51

root node, 51

root-pointer-predecessor, 80

example, 80

rooted binary DAG, 87

example, 87

rooted cyclic list

9

example, 70

rooted graph reduction specification

(RGRS), 68

rooted grid, 84

example, 84

rooted rule, 51

example, 52

rule, 26

example, 28

rule application problem, 40

separating edge, 24

shape safe location, 242

shape safety preservation, 242

shape-safe rule, 181

singleton hypergraph, 29

size (rule), 26

source, 29

source normalisation, 131

example, 136

string heap-graph, 166

example, 166

string-graph, 165

example, 166

strong V-structure, 100

example, 100

subgraph, 23

surjective morphism, 25

tagged graph, 139

example, 139

track-morphism, 27

tuple-heap, 169

example, 170

tuple-type schema, 169

example, 170

unify tags, 140

example, 140

variable interpretation, 115

example, 115

vertex (graph), 23

vertex (hypergraph), 29

well-sourced, 128

well-typed state, 224

example, 224

10

Acknowledgements

I am grateful to my supervisor, Detlef Plump, for his advice, support and

guidance during this research, and for giving me the benefit of his invaluable

technical understanding.

I would like to thank my examiners, Arend Rensink and Colin Runciman,

whose clear and helpful comments have improved this thesis immensely. I

would also like to thank Colin for his advice and assistance during my PhD,

and for getting me interested in mathematical computer science during my

time as an undergraduate.

I would like to thank the University of York Department of Computer

Science for acting as my home for the past eight years, and for providing

a friendly, intellectually stimulating environment in which to do research.

I would like to thank the members of the Programming Languages and

Systems group, and especially Neil Mitchell, Sandra Steinert, Greg Manning,

and Matthew Naylor, for their help, advice and friendship.

I would like to thank all of the people, including but not limited to those

mentioned above, who have commented on various aspects of this work, and

especially those who have pointed out my mistakes. This thesis would be

much poorer without you.

Finally, I would like to thank my partner Lindsay, my parents Alison

and Dave, my family, and my friends.

This thesis is dedicated to Jess, Grace, Abby and Darcy. Sleep well

girls.

11

Author’s declaration

I declare that all the work in this thesis is my own, except where attributed

and cited to another author. Several sections of this thesis have been pub-

lished previously. For details, please see the end of Chapter 1.

12

Part I

Introduction and

preliminaries

13

Chapter 1

Introduction

This thesis is concerned with the use of graph transformation rules to spec-

ify and manipulate pointer structures. It aims to show that graph trans-

formation can form the basis of a practical and well-formalised approach to

specifying pointer properties, and that graph transformation rules can be

used as an efficient mechanism for checking the properties of graphs.

In this thesis we address three main questions. First, how can graph

transformation rules be made an efficient mechanism for checking the prop-

erties of graph structures? While graph transformation rules are well-

understood and semantically clean, their worst-case execution time is too

high for many applications, including checking whether a graph is a member

of a graph language. We define syntactic conditions ensuring fast applica-

tion of rules, and apply these conditions to give efficient graph recognition

systems.

Second, how do approaches based on graph transformation rules relate

formally to other approaches to specifying pointer properties? By examining

the relationship between graph transformation and other approaches we can

better understand the formal properties of both graph grammars and of

other approaches. In this thesis we show that context-free graph grammars

are closely related to separation logic [69], probably the most active current

approach to specifying pointer properties.

Third, how can graph grammars be used to specify the shape of pointer

structures in a practical C-like programming language? Pointer structures

are widely used in programming languages, but their properties have proved

difficult to specify and verify. We develop a language that uses graph gram-

14

mars to specify the properties of pointer structures. Graph grammars have

previously been used to abstractly specify classes of pointer structures, but

applying them to a practical language remains a challenge.

This chapter gives an introduction and overview of the research presented

in the thesis. Section 1.1 provides context and motivates our work. Section

1.2 describes the general approach and major research contributions of the

thesis. Section 1.3 describes in detail the structure of the thesis. Finally,

Section 1.4 describes the prior publication history of the work presented in

this thesis.

1.1 Background and motivation

1.1.1 Graph grammars and graph transformation

Graph transformation rules define rewrites over graphs. They generalise

to graphs the string rewrite rules familiar from context-free and context-

sensitive string grammars. Several different formulations have been pro-

posed (see [71] for an overview), but most can be classed as either context-

free or context-sensitive, depending on their power. A major advantage of

graph transformation rules is that they have been the subject of a large

amount of research into their properties, and they are consequently very

well understood formally.

Graph transformation rules can be used to specify grammars in the same

way that string rewrite rules specify string grammars. Graph grammars

define languages of graphs with common properties, by applying a set of

productions to a finite initial element. The various kinds of graph gram-

mar form a powerful and general framework for specifying the properties of

graphs.

This thesis makes considerable use of the double-pushout approach to

graph transformation, a context-sensitive approach. Rules in this approach

consist of a left and right-hand side graph, with an interface between them.

Derivations match the left-hand side in the target graph and rewrite it to

correspond to the right-hand side. Grammars based on double-pushout rules

are generally powerful, in the sense that they can define any recursively

enumerable language of graphs.

A major disadvantage of double-pushout graph transformation is that

each rule derivation has a polynomial worst-case time complexity given fixed

15

rules. This is a result of the high cost of matching a rule’s left-hand side

to a subgraph in the target graph. As a consequence, graph grammars and

graph recognition systems based on context-sensitive rules have a polynomial

worst-case complexity. In this thesis, we address this problem by defining

syntactic conditions ensuring improved application time.

This thesis also makes use of the hyperedge-replacement approach to

graph transformation, a context-free approach. Hyperedge replacement pro-

ductions replace single nonterminal edges with graphs. The hyperedge re-

placement approach is less expressive than the double-pushout approach, in

that grammars based on double-pushout rules can express languages that

are inexpressible by hyperedge replacement grammars. However, hyperedge

replacement grammars have attractive theoretical properties, such as decid-

able language membership.

1.1.2 Pointer structures and shape safety

Software, unlike most other engineered artifacts, rarely does exactly what we

want. The designers of bridges or car engines can generally ensure that their

designs will work as intended. In contrast, even well-tested software often

behaves in unexpected ways, often by crashing or corrupting information.

The consequences of defective software can be severe, including millions of

pounds of economic damage and substantial numbers of deaths.

The aim of verification is to ensure that software behaves as we expect.

Programs cannot simply be tested to ensure correct behaviour; there are

simply too many possible inputs. Instead we must reason formally about

programs to show that they conform to specification.

Programming languages such as Java and C store complex data as so-

called pointer structures. Programs that use pointers are, however, amongst

the most difficult to verify, because pointers permit aliasing, which means

that local operations can have global effects. While some progress has been

made in verifying other programs, verifying pointer manipulating programs

is one of the major outstanding challenges in computer science.

For a pointer program to behave according to its specification the pro-

gram’s pointer structures must have the properties that are expected of

them: that they are trees, or are acyclic, or are lists of lists of cyclic lists,

and so on. We call these large-scale properties the shape properties of a

structure, and we call verifying that these properties always hold the prob-

16

lem of shape safety. Verifying shape safety is a necessary precondition for

verifying the correctness of most pointer programs.

Shape safety verification is currently a highly active area of research.

One active approach is verification based on separation logic [69]. This is a

recently-developed logic for specifying the properties of heaps that extends

normal first-order logic with a so-called separating conjunction. This allows

a formula to specify the spatial relationships between assertions in the heap.

Recent work based on separation logic has made considerable progress in

verifying pointer-manipulating programs [20].

An important measure for evaluating shape-safety approaches is the ex-

pressiveness of the approach used for specifying structures – that is, the

properties that can be expressed by the approach. The expressiveness of

graph-transformation based systems are well-understood, but surprisingly

little work has been done on the expressiveness of other shape-safety ap-

proaches, including separation logic.

1.1.3 Specifying pointer properties using graph grammars

Graph grammars can be used as a mechanism for abstractly specifying and

checking the shape properties of pointer structures. The Safe Pointers by

Graph Transformation (SPGT) project [4, 3] is a recent approach to ensur-

ing the safety of pointer manipulations. This approach uses double-pushout

graph transformation rules to define graph reduction systems (GRS), a vari-

ant on graph grammars. A GRS consists of a terminal element and a set of

reduction rules. Structures are members of the language of a GRS if they

can be reduced to the terminal element by the reduction rules.

The SPGT approach uses GRSs to specify the shape properties of pointer

structures. Pointer rewrites are then modelled as graph transformation rules.

An algorithm has been developed that checks the safety of pointer rewrites

expressed as graph transformation rules against a given GRS.

Reduction systems have the desirable property that they come with an

implied algorithm for membership checking, which consists of simply ap-

plying the reduction rules to the input graph. However, the high cost of

applying double-pushout rules means that this checking algorithm can at

best achieve a polynomial worst-case termination time, even when reduc-

tion is confluent.

Prior work on the SPGT approach focused on abstractly specifying and

17

checking shape properties [4, 3]. Shape checking in this work was defined

over graphs resembling pointer structures, rather than over pointer struc-

tures. No attempt was made in this prior work to implement the approach

with real executable programs.

1.2 Contribution

In this section we describe the major research contributions of this thesis.

These fall into three areas: the development of a framework for efficient

graph transformation and recognition; the definition of a relationship be-

tween hyperedge replacement grammars and a fragment of separation logic;

the development of a new language for ensuring shape safety.

1.2.1 Fast graph transformation and recognition

The SPGT project defines the properties of pointer structures using reduc-

tion systems based on graph transformation rules. Context-sensitive graph

transformation rules in general require at worst polynomial time for each

individual application. This has consequences for their use in some practi-

cal applications where polynomial time may be too expensive. In particular,

as a result of the high worst-case cost of graph transformation, reduction

systems generally require polynomial time or worse for graph recognition,

which makes run-time checking of shape properties expensive.

The first objective of this thesis is to show that graph transformation

rules can be an efficient approach to checking the properties of graphs. To

achieve this objective we first develop a approach to graph transformation

that improves the application time of individual rules. The syntactic ap-

proach we develop is not just suitable for specifying classes of pointer struc-

tures; it is a general approach to faster graph transformation.

Our approach is based on using syntactic conditions to restrict the possi-

ble search-space for a rule match. We first describe the semantic properties

of languages and rule-sets that permit efficient rewriting, and then develop

syntactic conditions that ensure that these semantic properties hold. Our

work on syntactic conditions continues and generalises the work of Dörr on

strong V-structures [25, 26]. (See §5.1 for a comparison between this work

and ours).

18

Our conditions break down into two classes. First, rooted conditions,

which require the existence of a uniquely-identified root. These ensure con-

stant time derivation, given fixed rules. Second, left-connected conditions,

which do not require roots. These ensure linear-time derivation, again with

fixed rules.

We show that rooted rules can be used for efficient multi-step graph

transformation. We also show that by sharing information between deriva-

tion steps, we can achieve linear-time multi-step derivation even with rules

that require linear time individually. To do this we modify an algorithm of

Arnborg and Courcelle [1] to amortise the cost of application over the whole

derivation.

We then apply this work to the problem of graph recognition by reduc-

tion, and define rooted and left-connected approaches to linear-time reduc-

tion. We present several examples of complex context-sensitive languages

that can be recognised in linear time, including grid graphs, balanced bi-

nary trees, and rooted binary DAGs. We also prove some interesting results

about the expressiveness of fast graph transformation systems.

We have treated graph transformation entirely abstractly, without ap-

plying it to a particular problem. Our work has defined a class of rules /

rule systems with an improved worst-case termination behavior. However,

heuristic approaches may perform better than our approach in practice for

particular problem domains. In §12.2.1 we discuss some of our objectives

for testing our system in practice.

1.2.2 Graph transformation and separation logic

The second objective of this thesis is to examine the relationship between

shape specification using graph transformation and other approaches to

pointer verification. We have chosen to focus on separation logic, and have

shown that a close relationship exists between hyperedge replacement gram-

mars and separation logic. We describe two effective translations between

restricted hyperedge replacement grammars and formulas in a fragment of

separation logic. These translations preserve the semantics of formulas and

grammars.

The translations exist because (1) the recursive definitions commonly

used in separation logic closely resemble hyperedge replacement produc-

tions, and (2) the separating property enforced by separating conjunction

19

corresponds to the context-free property of hyperedge-replacement gram-

mars. The translations demonstrate that formulas in our fragment of sep-

aration logic are of corresponding expressive power to HR grammars under

our restrictions.

As a consequence, formal results for hyperedge replacement languages,

such as inexpressibility results, can be imported into the fragment of sepa-

ration logic. For example, the languages of red-black trees, balanced binary

trees, grid graphs are all known to be HR-inexpressible. Consequently, they

are also inexpressible in our fragment of separation logic.

We have proved that the operators omitted from our fragment of sep-

aration logic cannot be simulated in general by a corresponding hyperedge

replacement grammar. Notably conjunction corresponds to language inter-

section, and negation to language complement, both of which are known to

be HR-inexpressible.

1.2.3 A new language for shape safety

The third objective of this thesis is to show that graph transformation rules

can be used to specify the properties of pointer structures in a practical C-

like language. Our foundation is the work of the SPGT project on abstractly

specifying pointer structures using graph reduction systems. We have de-

fined the language CGRS that applies SPGT checking to the C programming

language.

Our approach in the design of CGRS is to extend C with constructs

that explicitly correspond to those used in SPGT-style checking. In this, we

generalise the approach of Fradet and Le Métayer [31], who define a shape-

safety approach based on context-free graph transformation and extend C

with constructs corresponding to their shape safety approach. (See §11.1 for

a comparison between Fradet and Le Métayer’s work and CGRS).

Pointer structures used in the CGRS program have a declared shape that

specifies the possible form of the pointer structure. Shapes are declared

using a textual syntax that is deliberately close to the abstract definition of

a GRS. Shape structures in CGRS are manipulated by transformers. These

have a textual syntax corresponding closely to graph transformation rules.

CGRS deliberately adopts C conventions for its constructs, for example

by requiring that transformers are deterministic. CGRS has been designed

to work as an extension to C, and CGRS constructs can be used along-side

20

conventional C pointer structures. In addition, the fact that CGRS uses a

syntax close to graph transformation rules means that large rewrites can be

clearly expressed in CGRS.

The constructs of CGRS have two semantics. First, they have an ab-

stract semantics defined by mapping transformers to graph transformation

rules, and shape declarations to GRSs. Second, constructs have a concrete

executable semantics, defined by mapping them in-place to chunks of C code.

We have proved that the concrete implementation corresponds to the

abstract graph-transformation model. To do this, we define a concrete se-

mantics for a fragment of C, and prove that the implementation of a con-

struct corresponds to its abstract model. This proof means that the abstract

semantics of CGRS constructs can be used to check the shape safety of the

concrete implementation of the constructs.

In this thesis we have focused on the correctness of the modelling and

semantics. We have defined an operational semantics for CGRS and proved

the correctness of this semantics with respect to the abstract semantics.

However, we have not yet developed a complete implementation of CGRS.

In §10.7 we discuss some of our future objectives for implementing and

testing CGRS.

1.3 Thesis structure

The thesis structure is as follows. Chapter 2 gives the basic definitions of

graph transformation used in the rest of the thesis. Then the thesis is broken

into three parts, reflecting our three areas of research.

Part II examines fast graph transformation and efficient recognition.

Chapter 3 presents syntactic conditions ensuring fast execution of graph

transformation rules, both individually and in sequence. Chapter 4 presents

two classes of fast recognition systems with linear-time membership tests. It

also presents several example recognition systems including systems recog-

nising balanced binary trees and grid graphs. Chapter 5 compares our work

to other approaches to fast graph transformation and efficient recognition.

Part III examines the correspondence between hyperedge-replacement

grammars and separation logic. Chapter 6 introduces separation logic and

hyperedge-replacement graph grammars, defines a semantics to our fragment

of separation logic, and defines a translation between separation logic states

21

and heap-graphs. Chapter 7 describes a translation from separation logic

to hyperedge replacement and back, and proves that the translations are

semantics-preserving. Chapter 8 proves that some constructs must be omit-

ted from our fragment of separation logic and describes the consequences of

our translation for both separation logic and hyperedge replacement.

In Part IV we describe CGRS, our language for shape safety. Chapter 9

gives the syntax and an informal semantics for CGRS. Examples are given

of CGRS programs. Chapter 10 gives a concrete and an abstract seman-

tics for CGRS constructs, and proves that the two correspond. The shape

safety guarantees implied by this correspondence are described. Chapter 11

compares CGRS with other approaches to shape safety.

The thesis concludes with Chapter 12, which describes our major con-

tributions and suggests possible areas of future work.

1.4 Publication history

Portions of the material on fast graph transformation and efficient recog-

nition presented in Part II appear in my paper Graph Transformation in

Constant Time, written with Detlef Plump. This paper presents the rooted

syntactic conditions ensuring fast single-step derivations and efficient recog-

nition. It does not include the work on left-connected derivation and recog-

nition. This paper was presented to the 2006 International Conference on

Graph Transformation [23].

A overview of the material presented in Part III is given in the extended

abstract From Separation Logic to Hyperedge Replacement and Back. This

short paper omits almost all of the technical detail given in this thesis,

including the definitions of the translation functions and the proofs of cor-

rectness. It was presented to the Doctoral symposium at the 2008 Inter-

national Conference on Graph Transformation [21]. A long version written

with Detlef Plump will be published in the Doctoral Symposium proceedings

[24].

An early version of the material presented in Part IV appears in my

paper Extending C for Shape Checking Safety, written with Detlef Plump.

This paper includes the syntax of our language CGRS, but omits most of the

semantics and proofs of correctness. It was presented to the 2005 workshop

on Graph Transformation for Verification and Concurrency [22].

22

Chapter 2

Preliminaries

This chapter defines the basic technical background used in the rest of the

thesis.

2.1 Graphs and morphisms

In this section we define the notion of a graph, which is used in double-

pushout graph transformation.

(In §2.3 we define the notion of a hypergraph, for use in hyperedge-

replacement rewriting. In general a (labelled) graph is a (labelled) hyper-

graph with edges of arity exactly two. It would therefore be possible to define

only the single notion of a hypergraph. However, the notations commonly

used in double-pushout rewriting and hyperedge replacement research are

quite different, and the two approaches are used in entirely disjoint sections

of the thesis. For this reason, we define the two notions separately.)

Definition 2.1 (label alphabet). A label alphabet is a pair C = 〈CV , CE〉 of

finite sets CV and CE. The elements of CV and CE serve as node labels and

edge labels, respectively. For this section and the next, we assume a fixed

alphabet C.

Definition 2.2 (graph). A graph G = 〈VG, EG, sG, tG, lG,mG〉 over C con-

sists of a finite set VG of nodes (or vertices), a finite set EG of edges,

source and target functions sG, tG : EG → VG, a partial node labelling func-

tion lG : VG → CV and an edge labelling function mG : EG → CE . The

size of G, denoted by |G|, is the number of nodes plus the number of

23

edges. The out-degree of a node v, denoted by outdegG(v), is the num-

ber of edges with source v, while the in-degree, denoted by indegG(v) is

the number of edges with target v. The degree of a node v, denoted

degG(v), is equal to indegG(v) + outdegG(v). We write outlabG(v, l) for

{e ∈ EG | sG(e) = v ∧mG(e) = l}, the set of edges with label l outgoing

from v, and inlabG(v, l) for {e ∈ EG | tG(e) = v∧mG(e) = l}. A graph H is

a subgraph of G if VH ⊆ VG and EH ⊆ VG and sG = sH , tG = tH , lG = lH

and mG = mH for the nodes and edges in H.

Definition 2.3 (graph properties). A node v′ is reachable from a node v

if v = v′ or if there are edges e1, . . . , en such that sG(e1) = v, tG(en) = v′

and for i = 1, . . . , n− 1, tG(ei) = sG(ei+1). A graph is reachable from some

node v if every node in VG is reachable from v. A pair of nodes v and v′

are connected if v = v′ or if v is reachable from v′ or v′ is reachable from

v. A graph is connected if every pair of nodes v, v′ ∈ VG are connected. A

connected component is a maximal subgraph such that every pair of nodes in

the subgraph are connected and no node outside the component is connected

to a node in the component. We write G \ l for the graph G with edge l

removed. An edge l is separating in G if G\l has more connected components

than G.

Example 2.1 (graph, graph properties). The diagram given below shows

a graph G with node-set VG = {vJ , vK , vL, vM , vN , vP }, edge-set EG =

{ea, eb, ec, ed, ee, ef}, and node and edge-labelling functions corresponding

to the given node and edge subscripts.

L M

J

P

N

a b
K

c

d

fe

The node vM has in-degree 3, out-degree 1, and degree 4. The node vK

is reachable from vP , via the path ef , ed, ec. The edge eb is separating in

G, because removing it results in a graph with two connected components.

24

L M

J

P

N

a
K

c

d

fe

The diagram above shows the graph G′ resulting from the removal of the

separating edge eb from G′. This graph contains two connected components.

The nodes vM ,vK ,vN and vP and their intersecting edges form one connected

component. The nodes vL and vJ form the other.

Definition 2.4 (graph morphism). A graph morphism g : G→ H between

two graphs G and H consists of two functions gV : VG → VH and gE : EG →

EH that preserve sources, targets and labels: sH ◦ gE = gV ◦ sG, tH ◦ gE =

gV ◦tG, and lH(gV (v)) = lG(v) for all v in dom(lG), and mH(gE(e)) = mG(e)

for all e ∈ EG. A morphism g is injective (surjective) if gV and gE are

injective (surjective); it preserves undefinedness if lH(g(v)) = ⊥ for all v in

VG − dom(lG). Morphism g is an isomorphism if it is injective, surjective

and preserves undefinedness. In this case G and H are isomorphic, which is

denoted by G ∼= H. Furthermore, g is an inclusion if g(x) = x for all nodes

and edges x in G. (Note that inclusions need not preserve undefinedness.) A

partial graph morphism h : G ⇀ H is a graph morphism from some subgraph

of G to H.

Example 2.2 (graph morphism). Suppose we have the following small

graph G′′ with node set VG′′ = {vJ ′ , vM ′ , v⊥}, edge set EG′′ = {eb′ , e⊥},

and the labelling functions corresponding to the node and edge subscripts.

J
b

Then the functions gV = {vJ ′ 7→ vJ ′ , vM ′ 7→ vM ′ , v⊥ 7→ v⊥}, gE = {eb′ 7→

eb′ , ee′ 7→ e⊥} form an isomorphism (injective, surjective and preserving

undefinedness) between G′′ and itself.

Now consider the graph G defined in Example 2.1. The functions g′V =

{vJ ′ 7→ vJ , vM ′ 7→ vM , v⊥ 7→ vP }, g′E = {eb′ 7→ eb, e⊥ 7→ ee} form an

injective morphism between G′′ and G. The pair of functions g′′V = {vJ ′ 7→

vJ , vM ′ 7→ vM , v⊥ 7→ vJ}, g′′E = {eb′ 7→ eb, ee′ 7→ eb} form a non-injective

morphism from G′′ to G, as g′′V (vJ ′) = g′′V (v⊥) (meaning vJ ′ is shared).

25

Z Y

X P

f

g

i1

i2

Z Y

X P

Q

u

f

g

i1
i2

j1

j2

Figure 2.1: Commutative diagrams defining a pushout.

P Y

X Z

p1

p2

f

g

P Y

X Z

Q
u

p1

p2

f

g

q1

q2

Figure 2.2: Commutative diagrams defining pullback.

Definition 2.5 (pushout, pullback). The pushout of two graph morphisms

f : Z → X and g : Z → Y with a common domain consists of a graph P and

two morphisms i1 : X → P and i2 : Y → P for which the left-hand diagram

in Figure 2.1 commutes. It must be true of the pushout (P, i1, i2) that for

any other such triple (Q, j1, j2) there exists a unique morphism u : P → Q

for which the right-hand side diagram in Figure 2.1 commutes.

A pullback is the inverse notion to a pushout. The pullback of f : G→ Z

and g : Y → Z consists of a graph P and two morphisms p1 : P → X and

p2 : P → Y for which the left-hand diagram in Figure 2.2 commutes. It must

be true of the pullback (P, p1, p2) that for any other such triple (Q, q1, q2)

there exists a unique morphism u : Q → P for which the right-hand side

diagram in Figure 2.2 commutes. We call a pushout natural if it is also a

pullback.

2.2 Double-pushout graph rewriting

In this section we review basic notions of the double-pushout approach to

graph transformation, using a version that allows unlabelled nodes in rules

[43].

Definition 2.6 (rule, direct derivation). A rule r = 〈L← K → R〉 consists

26

b
L ← K → R

g ↓ (1) ↓ d (2) ↓ k
G ← D → H

Figure 2.3: Two natural pushouts defining a direct derivation from graph G
to graph H.

of two inclusions K → L and K → R such that (1) for all v ∈ VL, lL(v) = ⊥

implies v ∈ VK and lR(v) = ⊥, and (2) for all v ∈ VR, lR(v) = ⊥ implies

v ∈ VK and lL(v) = ⊥. L is the left-hand side, R the right-hand side

and K the interface of r. The size of a rule r, denoted by |r|, is equal to

max(|L|, |R|). The inverse of a rule is obtained by swapping left- and right

hand sides together with the inclusion morphisms.

Definition 2.7 (derivation). A direct derivation from a graph G to a graph

H via a rule r = 〈L ← K → R〉, denoted by G ⇒r,g H or just G ⇒r H,

consists of two natural pushouts, arranged as shown in Figure 2.3, where

g : L→ G is injective.

A direct derivation via a set of rules R, denoted by G⇒R H, is defined

if for any rule r in R there exists a direct derivation G ⇒r H. If no direct

derivation G ⇒r H exists, then G is irreducible with respect to R. A

derivation G ⇒∗
R H is defined if there exists a sequence of derivations

G ∼= I0 ⇒R I1 ⇒R . . .⇒R In
∼= H.

Morphism g in Figure 2.3 is called the matching morphism while k is

called the result morphism. The track-morphism for a direct derivation

G⇒ H, denoted trG⇒H is the partial morphism between the elements of G

and H that are preserved by the derivation.

Lemma 2.1 (proved in [43]) gives a characterisation of the natural pushouts

in a direct derivation.

Lemma 2.1 (characterisation of natural pushouts [43]). Given two graph

morphisms b : K → L and d : K → D such that b is injective, pushout (1)

in Figure 2.3 is natural if and only if for all z ∈ K, lK(z) = ⊥ implies

lL(b(z)) = ⊥ or lD(d(z)) = ⊥.

Definition 2.8. dangling condition In [43] it is shown that for a given rule r

and injective morphism g, there exists such a direct derivation if and only if

27

g satisfies the dangling condition: no node in g(L)− g(K) must be incident

to an edge in G− g(L).

If the dangling condition is satisfied, then r and g determine D and H

uniquely up to isomorphism and H can be constructed (up to isomorphism)

from G as follows: (1) Remove all nodes and edges in g(L)−g(K), obtaining

a subgraph D′. (2) Add disjointly to D′ all nodes and edges from R − K,

keeping their labels. For e ∈ ER − EK , sH(e) is sR(e) if sR(e) ∈ VR − VK ,

otherwise gV (sR(e)). Targets are defined analogously. (3) For each node

gV (v) in g(K) with lL(v) 6= lR(v), lH(gV (v)) becomes lR(v).

Note that in the construction, D differs from D′ in that nodes are unla-

belled if they are the images of unlabelled nodes in K that are labelled in

L. We do not need D to transform G into H though.

Rules with unlabelled nodes in the interface graph allow the relabelling

of nodes. In addition, rules with unlabelled nodes in their left and right-

hand sides represent sets of totally labelled rules because unlabelled nodes

in the left-hand side can act as placeholders for arbitrarily labelled nodes.

Example 2.3 (rule, derivation). The following pair of morphisms define a

rule r that matches a pair of nodes labelled J and L, removes the J-labelled

node and constructs a new Y -labelled node with an attached a-labelled edge.

J

a

X

Y

a

1 1

1← →

Note that in all three graphs one of the nodes have associated subscript

‘1’. The morphisms map the 1-subscripted node in the interface graph to the

1-subscripted nodes in the left and right-hand sides. As the J-labelled node

on the left-hand side does not have a corresponding node in the interface,

it will be deleted by the rule. For the same reason, a new Y -labelled node

will be constructed by the rule.

We often omit the interface graph, and define it by implication using

node subscripts. The diagram given below shows the same rule written

using this notation.

L

J

a

X

Y

a

1 1

⇒

28

Applying this rule to the graph G′ defined in Example 2.1 gives the

following direct derivation.

L M

J

P

N

a
K

c

d

fe

⇒r
X M

Y

P

N

a
K

c

d

fe

This rule cannot apply to the graph G defined in Example 2.1, even

though there exists a matching morphism between the left-hand side of the

rule and the graph. This is because the match would remove the J-labelled

node, leaving dangling edges and so violating the dangling condition.

Definition 2.9 (graph class, C-preserving). To keep this definition indepen-

dent of any type system imposed on graphs, we introduce abstract graph

classes and rules preserving such classes. A graph class over a label alphabet

C is a set C of graphs over C. A rule r is C-preserving if for every direct

derivation G⇒ H, G ∈ C implies H ∈ C.

2.3 Hyperedge-replacement graph rewriting

In this section we review the basic notions of the hyperedge-replacement

approach to graph transformation. This section is based on the definitions

given in [27, 38].

For this section we assume we have a fixed label alphabet C. We also

assume a fixed arity function ari : C → N.

Definition 2.10 (hypergraph). A hypergraph H over C and ari is a tuple

H = 〈V,E, att, l, ext〉. V and E are, respectively, finite sets of vertices (or

nodes) and hyperedges (often just referred to as edges). l : E → C assigns

an edge label to each edges. att : E → V ∗ assigns to edges a sequence of

attachment nodes, with |att(e)| = ari(l(e)) for all e ∈ E. The first element

of att(e) is the source of hyperedge e, if it exists. We denote by att(e)[i] the

ith attachment point of e. ext ∈ V ∗ defines a sequence of pairwise-distinct

external nodes. A hypergraph H such that |extH | = n is an n-hypergraph.

Given a hypergraph H and set X ⊆ C of labels we denote by EH
X the

set {e ∈ EH | l(e) ∈ X} of hyperedges of H with labels in X. The class of

29

all hypergraphs over C is denoted by HC . A graph H ∈ HC is said to be

a singleton if the members of VH are all members of extH , and |EH | = 1.

A singleton H with EH = {e} and att(e) = extH is a handle. The unique

handle for a label A is denoted A•.

Example 2.4 (hypergraph). The left diagram below shows a hypergraph

H over label-set {A,B,C} and arity function {A 7→ 1, B 7→ 2, C 7→ 3}.

1

B

1

2

C
1

2

3

1

C
1

2

3

1
3

2

This hypergraph has three vertices and four nodes. The second attach-

ment point of the B and C-labelled edges is the only external node, repre-

sented by the subscript 1. The source (and sole attachment point) of the

A-labelled hyperedge is also the source for the B and C-labelled edges.

The right diagram shows a singleton hypergraph H ′. This hypergraph

is also the handle C•, because the external nodes are the same as the list of

attachment points for the single C-labelled edge.

Definition 2.11 (hyperedge replacement). Let H ∈ HC be a hypergraph,

B ⊆ EH be a set of hyperedges to be replaced. Let repl : B → HC be a

mapping with |extrepl(e)| = ari(e) for all e ∈ B. Then the replacement of

B in H by repl yields the hypergraph H[repl] by removing B from EH ,

adding the nodes and hyperedges of repl(e) for each e ∈ B disjointly, and

fusing the i-th external node of repl(e) with the i-th attachment node of e

for each e ∈ B and i = 1, . . . , ari(e). Note that the replacement involves

merging nodes in the hypergraph repl(e) if att(e) contains repeated nodes.

If B = {e1, . . . , en} and repl(ei) = Ri for i = 1, . . . , n then we also write

H[e1/R1, . . . , en/Rn] instead of H[repl].

Let N ⊆ C be a set of non-terminals. A production over N is an ordered

pair p = (A,R) with A ∈ N , R ∈ HC , and |extA| = |extR|. Let H be a graph

in HC and let P be a set of productions. Let e ∈ EH and (labH(e), R) ∈ P .

Then H directly derives H ′, denoted by H ⇒P H ′ if H ′ ∼= H[e/R]. A

direct derivation via a set of productions P , denoted by G⇒P H, is defined

if for any production p in P there exists a direct derivation G ⇒p H. A

30

derivation G⇒∗
P H is defined if there exists a sequence of derivations G ∼=

I0 ⇒P I1 ⇒P . . .⇒P In
∼= H.

Example 2.5 (hyperedge replacement). Suppose we have the set of non-

terminals N = {A,C}, and production p = (C,R), where R is the following

graph. � �
2

B

1

2 B

1

2

B1 2

Then applying p to the graph H defined in Example 2.4 gives the fol-

lowing derivation.

A 1

1

2

C
1

2

3

1

⇒p

1

2

1

2

1
2

1

1

2

1

Definition 2.12 (hyperedge replacement grammar). A hyperedge-replace-

ment grammar (or HR grammar) G over C is a tuple G = 〈T,N,P,Z〉

where T ⊆ C and N ⊆ C are sets of terminal and non-terminal symbols

respectively. P is a set of productions over N . Z is the set of initial graphs.

The language of the grammar, written L(G) is the set of all graphs H ∈ HT

such that there exists a derivation I ⇒∗
P H for some I ∈ Z. The language

family L : N 7→ HT generated by G is given by L(A) = {G ∈ HT | A
• ⇒∗

P

H}.

Note that in this document we define hyperedge replacement grammars

with a finite initial set of graphs. In contrast, the standard definition fea-

tured in e.g. [27, 38] (and many others) has a single initial graph. This

change to the definition makes no difference to the theoretical properties of

hyperedge-replacement grammars, because each definition can be simulated

by the other. A set of initial graphs {G1, . . . , Gn} can be trivially simulated

in the single-graph definition by replacing the initial set with a graph con-

taining a single I-labelled hyperedge of arity 0 (where I does not occur in

the given grammar), and adding n productions (I,Gi) for 1 ≤ i ≤ n.

31

Example 2.6 (hyperedge replacement grammar). Suppose we have a set of

terminal labels TCL = {L,E}, arity function ariCL = {L 7→ 2, E 7→ 2}, and

set of nonterminal symbols NCL = {L}. Then we can define a hyperedge

replacement grammar 〈TCL, NCL, PCL, ZCL〉 which generates the language of

cyclic E-labelled lists.

This grammar has a single graph in its initial set. The initial graph,

shown below, consists of a single L-labelled edge with both attachment

points attached to the same node.

L
1

2

The grammar has two productions (L,R1) and (L,R2). The production

based on graph R1, shown on the left below, produces an L-labelled edge

and an E-labelled terminal edge. The production based on R2, shown on the

right, terminates the derivation by producing only a single terminal edge.

1 2

E1 2 L 21

1 2

E1 2

The language of graphs for this grammar is the class of all E-labelled

cyclic lists. For example, the following hypergraph is a terminal member of

the language containing five edges.

1

2 21

2

1

2 1

2

1

2.4 Graph signatures

All of the notation given in previous sections is standard in the literature on

graph transformation. We now define the notion of a graph signature, which

is not standard. A graph signature defines a class of conformant graphs that

restrict the number of edges with a particular label that can be attached to

a node with a particular label.

Signatures are used in later chapters to conceptually separate local pat-

terns of node and edge attachment from more complex language membership

questions.

32

Definition 2.13 (graph signature). A graph signature Σ = 〈L, in, out〉

consists of a label alphabet L = 〈LV ,LE〉 and a pair of partial functions

in, out : LV × LE → N. A graph G over C is a Σ-graph (or conforms to

Σ) if for every node v and edge label k, (1) if out(lG(v), k) is defined, then

there are at most out(lG(v), k) edges with source v and label k, and (2) if

in(lG(v), k) is defined, then there are at most in(lG(v), k) edges with target

v and label k.

A graph is Σ-total if for every node v and edge label k, (1) if out(lG(v), k)

is defined, then there are exactly out(lG(v), k) edges with source v and label

k, and (2) if in(lG(v), k) is defined, then there are exactly in(lG(v), k) edges

with target v and label k.

Note that no restrictions are placed on the number of incoming and

outgoing edges with a particular label if in or out are equal to ⊥ (undefined)

for the node and edge label.

Example 2.7 (graph signature). Let Σ be a signature 〈L, in, out〉 such that

L = 〈{a}, {b}〉, in(a, b) = 1 and out(a, b) = ⊥.�� ��
The left-hand graph above conforms to the signature, because the in-

degree of every a-labelled node does not exceed 1. The out-degree is un-

bounded, as out(a, b) = ⊥. However, the right-hand graph above does not

conform to the signature, because the in-degree of the lowest node is 2,

which is greater than in(a, b).

The notion of a graph signature defined here is similar to the widely-used

notion of a multiplicity label. This notion is used in type graphs [73, 68], and

in UML class diagrams [62]. A signature Σ where out(l) = n corresponds

to a multiplicity of 0 . . . n on an outgoing edge from an l-labelled node. If

out(l) = ⊥, then the corresponding multiplicity would be ∗. The same is

true for in.

However, our notion of a signature is designed to be an entirely local,

syntactic property. In contrast, type graphs and class diagrams use multi-

plicity annotations as part of much more expressive systems for specifying

33

larger-scale graph properties. Type graphs and class diagrams specify the

permitted relationships between nodes. In contrast, our notion of a signature

only specifies the permitted multiplicities of node and edge combinations,

and places no other restriction on the structure of a graph.

Proposition 2.2 (signature conformance complexity). Checking whether a

graph G is a Σ-graph requires at worst time O(|G|).

Proof. Each node v must be checked for signature conformance. The node

label lV (v) and the set of labels l of edges attached to v are first checked to

confirm that they are in L. Under our general assumption about the time

complexity of accessing information about a graph (Assumption 3.1 in §3.1)

given a particular edge label l and node v, the number of outgoing edges

from v with label l can be retrieved in time O(1). This value can then be

compared with the signature-value out(lv(v), l) to check the signature holds

for this particular pair. The same O(1) bound holds for incoming edges

with label l. Our graphs have fixed, finite label-sets, so for any node v the

signature can be checked for all edge labels in time O(1). To check signature

conformance for the whole graph requires that each node is checked in this

way, so the overall time complexity is O(|G|).

We now define a sufficient syntactic condition on double-pushout graph

transformation rules ensuring that they preserve conformance to a signature.

Definition 2.14 (Σ-rule). A rule r = 〈L ← K → R〉 is a Σ-rule if L, K

and R are Σ-graphs and for each node v in K and node label l ∈ CV ,1

(1a) lL(v) = ⊥ = lR(v) implies |outlabL(v, l)| ≥ |outlabR(v, l)|.

(1b) lL(v) = ⊥ = lR(v) implies |inlabL(v, l)| ≥ |inlabR(v, l)|.

(2a) lL(v) 6= ⊥ implies out(lL(v), l)− |outlabL(v, l)|+ |outlabR(v, l)| ≤

out(lR(v), l).

(2b) lL(v) 6= ⊥ implies in(lL(v), l) − |inlabL(v, l)| + |inlabR(v, l)| ≤

in(lR(v), l).

These two conditions ensure that Σ-graphs are preserved by Σ-rules.

Conditions (1a) and (1b) ensure that number of outgoing and incoming edges

with a particular label cannot increase if the node’s label is not fixed by the

1To simplify notation, we let the node v stand for its image in the left and right-hand
side graphs in some cases. Which is meant will be obvious from the domains of the
functions.

34

rule. Conditions (2a) and (2b) ensure that the number of edges added by

the right-hand side combined with the number already in the graph cannot

exceed the maximum number mandated by the signature.

Example 2.8 (Σ-rule). Let Σ be a signature 〈L, in, out〉 such that L =

〈{a}, {b}〉, in(a, b) = 1 and out(a, b) = 3.�1

2

⇒
��1

2

�1

2

⇒ ��1

2

�
The left-hand side rule given above is a Σ-rule, as the new edges respect

the signature for the labelled nodes, and do not intersect with the unlabelled

node. The right-hand rule is not a Σ-rule, because a new edge is created

intersecting an unlabelled node, and because the edges intersecting with the

labelled node may violate the signature.

Proposition 2.3 (Σ-rules preserve Σ-graphs). Let G⇒r H be a derivation

such that G is a Σ-graph and r a Σ-rule. Then H is a Σ-graph.

Proof. Consider a node v in VH and label l ∈ LE. If v was not matched

by r then the number of l-labelled nodes incoming and outgoing from v

are unchanged from G and by assumption the node must conform to the

signature. If v was matched by an unlabelled node in r, then by conditions

(1a) and (1b) the derivation can only decrease the number of incoming

and outgoing edges labelled l, so signature conformance is preserved from

G. If v was matched by a labelled node, then conditions (2a) and (2b)

mean arithmetically that the increase in the number of attached incoming

and outgoing l-labelled edges cannot exceed the maximum number of edges

mandated by the signature.

35

Part II

Fast graph transformation

and recognition

36

Chapter 3

Fast graph transformation

Graph transformation rules under the double-pushout approach are a pow-

erful mechanism for formulating graph rewriting systems. However, a major

obstacle to using these rules in practical computation systems is the time

required for rule application. Finding a match for a rule r = 〈L← K → R〉

in a graph G requires at worst time O(|G||L|). This is too expensive for some

applications, even if r is fixed (meaning that |L| is constant).

For example, in Part IV we propose the language CGRS that extends the

C programming language with graph-transformation constructs to enable

the safe manipulation of pointers. We argue in §9.2.1 that to make such

a language acceptable for programmers, individual rule constructs must be

applicable in constant time.

Other applications would also benefit from faster graph transformation.

Languages based on graph-transformation, such as the GP language [65, 57],

and the GROOVE tool [66, 67], are based on the sequential application

of graph-transformation rules. For programs written in such languages to

execute in a reasonable amount of time, individual rules must apply quickly.

Constant-time rule application is achieved in CGRS by using a restricted

form of graph transformation characterised by (1) a requirement that all

nodes in the host-graph have distinctly-labelled out-edges, and (2) the pres-

ence of uniquely-labelled root nodes in rules and host graphs. These roots

serve as entry points for the matching algorithm and ensure, under further

assumptions on left-hand sides and host graphs, that all matches of a rule

can be found in time independent of the size of the host graph.

In this chapter we take the CGRS approach and present a more general

37

theory of fast graph transformation in the setting of the double-pushout

approach, encompassing both linear-time and constant-time rewriting. The

rooted graph transformation used in CGRS is included in this general theory

as a special case. Our approach is based on syntactic restriction of rules and

graphs that result in an improved worst-case application time.

The structure of this chapter is as follows. Section 3.1 defines the ba-

sic concepts used in the rest of the chapter, and defines the fundamental

problems of graph matching and graph transformation that are solved by

our algorithms. Section 3.2 presents a characterisation of so-called left-

connected graph transformation rules, and gives an algorithm for applying

these rules. The semantic conditions under which these rules apply in linear

time are characterised, and syntactic conditions ensuring these properties

hold are given. Section 3.3 presents so-called rooted graph transformation

rules, and defines the semantic conditions under which such rules can be

applied in constant time. Once again we give syntactic conditions that guar-

antee that these semantic conditions hold. Finally, Section 3.4 defines the

problem of multi-step graph transformation, that is, the problem of apply-

ing a set of rules in a sequence of rewrites. This section presents conditions

on graph transformation systems ensuring that multi-step rule-applications

of bounded length terminate in linear time.

3.1 The problems of graph transformation

This section defines formally the basic problems of graph transformation.

Here we look at the problem of applying a single rule once only; in §3.4 we

extend this to look at applying sets of rules and applying rules in sequence.

Assumption 3.1. We assume in the rest of this thesis that graphs are

stored in a format such that the time complexities of various problems are

as given in the table below.

38

Input Output Time

label l Set Z of nodes with label l. O(|Z|)

node v Values deg(v), indeg(v), outdeg(v). O(1)

node v, label l No. nodes with source v and label l. O(1)

node v, label l No. nodes with target v and label l. O(1)

node v, label l Set Z of nodes with source v and label l. O(|Z|)

node v, label l Set Z of nodes with target v and label l. O(|Z|)

graph G |VG| and |EG| O(1)

These assumptions are satisfied by a graph structure where each node

stores a set of references to incoming and outgoing edges for each edge label,

and also records the size of each of these sets.

Constructing a matching morphism for a rule r = 〈L← K → R〉 into a

graph G requires at worst time O(|G||L|). This time bound is achieved by

even the simple algorithm that constructs a partial matching morphism of

increasing size by adding nodes and edges in arbitrary order, then backtracks

when no extension is possible. As there are at most |G||L| distinct total

morphisms from L to G, the size of the search-tree of partial morphisms is

similarly bounded.

In general, we consider the rule for which we are constructing a derivation

fixed, rather than as an input to the problem. This fixed-rule viewpoint fits

well with the application of this work to graph recognition and programming

by graph transformation. In both of these applications we have a rule-set

of fixed size from which rules are applied to variable-size graphs, which

can be arbitrarily large. This viewpoint also fits with the standard view of

computational complexity for computer programs: programs are considered

fixed, and data-structures are of variable size.

A consequence of the fixed-rule viewpoint is that the size of the left-hand

side is also fixed, and so the time complexity O(|G||L|) is a polynomial.1 The

exponent may however be very large, depending on the size of the matched

rule.

The time complexity of applying a rule 〈L ← K → R〉 to a graph G is

dominated by the cost of finding the matching graph morphisms L → G.

1If we consider both the left-hand side L and host-graph G as part of the input, the
problem of constructing a matching morphism becomes the subgraph isomorphism problem.
This is the problem to decide whether there exists an injection from L to G. This problem
is known to be NP-complete [35]; In the worst case, if there is no subgraph isomorphism,
solving it is as expensive as finding all solutions.

39

This is because for each of these morphisms, checking the dangling condition

and transforming G into H can be done in time independent of the size of

G (under the assumptions about graph representation given in Assumption

3.1). We isolate the cost of matching by examining first the rule application

problem.

Rule Application Problem (RAP).

Given: A graph class C and a C-preserving rule r = 〈L← K → R〉.

Input: A graph G ∈ C and an injective morphism g : L→ G.

Output: Either a graph H such that G ⇒r,g H, or if no such graph

exists, fail.

We have factored out the dangling condition from the rule application prob-

lem, meaning that the dangling condition must be checked for a complete

morphism after matching. An alternative algorithm would be to check the

dangling condition for each node incrementally at the point it was added to

the matching morphism. Such an incremental algorithm would result in an

improved application time in many cases by ruling out candidate matches

earlier. This improvement makes no difference to the worst-case application

time, however.

We have chosen to factor out the dangling condition despite this poten-

tial inefficiency in order to clearly separate concerns between matching and

all other aspects of rule application. By focusing on matching exclusively we

can more clearly explain our solutions to the high cost of graph transforma-

tion. In addition, the algorithms we give below can be simply modified to

include incremental checking of the dangling condition without disturbing

our improved time complexity results. Finally, an incremental algorithm

may give a worse application time than the staged algorithm in cases with

many candidate but few complete matches.

To solve the rule application problem we define the pair of auxiliary

algorithms Dangle and Apply. These algorithms are used in the definition

of several of the later algorithms of this chapter.

Algorithm 3.1 (Dangle). The algorithm Dangle(G, r, h) takes as its ar-

gument a graph G, a rule r = 〈L ← K → R〉 and a candidate morphism

g : L→ G. It returns pass if g satisfies the dangling condition, or fail oth-

erwise. Dangle is implemented by degree comparison. The dangling con-

dition holds if and only if for all nodes v in VL−VK, degL(v) = degG(h(v)).

40

The dangling condition can therefore be checked by comparing degL(v) with

degG(h(v)) for all nodes v in VL − VK .

Algorithm 3.2 (Apply). The algorithm Apply(G, r, h) takes as its argu-

ments a graph G ∈ C, C-preserving rule r = 〈L ← K → R〉 and injection

g : L → G satisfying the dangling condition. The algorithm constructs the

unique (up to isomorphism) double pushout required for application of r, as

given by the following diagram. It returns the uniquely-determined resulting

graph H.

L K R

G D H

g

The algorithm constructs the double pushout for the derivation G⇒g,r

H by first constructing the intermediate graph D, by deleting nodes matched

to L − K in the morphism, and removing the labels of nodes that are the

images of nodes unlabelled in K. Edges not present in K are also removed.

The algorithm then constructs the result graph H. New nodes are con-

structed, labels are inserted, and new edges are added, so that the elements

added to D correspond to the graph R−K.

Proposition 3.1 (complexity of RAP). The rule application problem for a

rule r = 〈L← K → R〉 can be solved in time O(|r|).

Proof. The rule application problem can be solved using the algorithms

Dangle and Apply. Given an injection h : L → G, checking the dangling

condition requires O(|VL|) comparisons of node degrees. We have assumed

a graph representation such that the degree of any node can be retrieved in

constant time, so all of the degree comparisons required by a single run of

Dangle can be checked in time O(|VL|).

Apply must terminate in time O(|L| − |K| + |R| − |K| + |VK |). Given

a morphism g, nodes and edges can be removed in time O(|L| − |K|). New

nodes and edges can be inserted in time O(|R| − |K|). Relabelling nodes

requires time O(|VK |) at most.

Thus we obtain the time bound for the RAP of O(|VL| + |L| − |K| +

|R| − |K|+ |VK |). As |VL|, |L|, |R|, |K| and |VK | are all bounded by |r|, the

problem complexity can be estimated as O(|r|).

41

Having solved the rule application problem, this now leads us to the core

problem: the construction of matching morphisms.

Graph Matching Problem (GMP).

Given: A graph class C and a C-preserving rule r = 〈L← K → R〉.

Input: A graph G in C.

Output: The set {g : L→ G | g is injective}.

As discussed above, on page 38, solving the graph matching problem

requires time O(|G||L|) in the worst case – better algorithms are not known.

In the following sections we examine syntactic restrictions on graph trans-

formation that improve this worst-case performance.

3.2 Fast left-connected graph transformation

This section introduces conditions sufficient to ensure that rules can be exe-

cuted in linear time (with fixed rules, as under the graph matching problem).

Intuitively, for each node in the target graph, these conditions place a con-

stant bound on the number of potential matches which include this node.

Because the number of nodes in the graph is bounded by the size of the

graph, this results in a search space that grows linearly.

Definition 3.1 (left-connected rule). A graph transformation rule r = 〈L←

K → R〉 is left-connected if the left-hand side graph L is connected.

Assumption 3.2. For the rest of this section, let C be a graph class and

r = 〈L ← K → R〉 a fixed C-preserving left-connected rule. Let n always

refer to the number of edges in L.

Our matching algorithm for left-connected rules is based on the auxiliary

algorithm Search, which takes a node s in the left-hand side of a rule and

a node v in the target graph and constructs all matching morphisms that

map s to v.

The algorithm starts with the set A0 consisting of all partial injections

that associate only s to v. Each iteration of the algorithm then extends the

set of injections in the previous working set with a single edge and its target

node, or a single edge and its source node, or a single edge only. Injections

that cannot be extended are removed. The algorithm terminates when all

of the remaining injections in the set are total, or the set of injections is

42

empty. When an iteration of the algorithm adds some left-hand side node

or edge to the domain of an injection, we speak of the node or edge being

matched.

A pre-processed enumeration of the edges of the left-hand side ensures

the algorithm matches edges in order, so that when an edge is matched, its

source or target must have been matched in some previous iteration.

Definition 3.2 (edge enumeration). An edge sequence e1, . . . , en is an edge

enumeration of L if EL = {e1, . . . , en} and for i = 2, . . . , n, ei is incident

with the source or target of some edge in e1, . . . , ei−1. The ith member of

enumeration EL is referred to by E[i]. A node is an initial node of the

enumeration if it is the source or target of edge e1.

Example 3.1 (edge enumeration). Suppose we have the following graph G.

In this graph labels are used to uniquely identify graph edges.

a
�

c

d

fe

1

2 3

4

The sequence [a, b, c, e, d, f] is a valid edge enumeration for this graph,

with initial nodes 1 and 2. The sequence [f, d, c, b, a, e] is also valid, with

initial nodes 3 and 4. However the sequence [a, c, b, e, d, f] is not valid, as

edge c is included before one of its incident nodes has been incident with an

earlier edge. The sequence [a, b, d] is also not valid, because it omits some

of the graph’s edges.

Every connected graph L possesses at least one edge enumeration. An

enumeration can be constructed by picking an arbitrary start edge, and then

picking edges non-deterministically from the set of edges adjacent to those

already in the enumeration. The connectedness of L ensures that all edges

must be either attached to an initial node or adjacent to an edge earlier in

the enumeration.

Definition 3.3 (morphism extension). Given partial morphisms g, g′ : G ⇀

H and edge e ∈ EG, we write g >e g′ (pronounced ‘g extends g′ by e’), if

e /∈ dom(h′
E) and dom(hE) = dom(h′

E) ∪ {e} and dom(hV) = dom(hV) ∪

43

{sG(e), tG(e)}, and for all v ∈ dom(h′
V), h(v) = h′(v), and for all e ∈

dom(h′
E), h(e) = h′(e).

Example 3.2 (morphism extension). Consider the graph G in Example

3.1. Let v1 and v2 be the nodes with tags 1 and 2, and let ea be the a-

labelled edge. Suppose we have a partial morphism h : G → G such that

hV = {v1 7→ v1} and hE = ∅. Then the morphism h′ extends h by ea if

h′
V = {v1 7→ v1, v2 7→ v2} and h′

E = {ea 7→ ea}.

Algorithm 3.3 (Search). The algorithm Search(j, v,G,E) assumes the

fixed rule r and it takes as its inputs a left-hand side start node j ∈ VL, and

a target graph start node v ∈ VG, a graph G ∈ C, and edge enumeration

E = e1, . . . , en with j as an initial node. It returns as its output a (possibly

empty) set of all injections h : L→ G such that hV (j) = v.

Search(j, v,G,E)

1 A0 ← {g : L ⇀ G | gV (j) = vG ∧ dom(gV) = {j} ∧ dom(gE) = ∅}

2 for i← 1 to n

3 do Ai ← {g : L ⇀ G | g is injective ∧ ∃g′ ∈ Ai−1. g >E[i] g′}

4 return An

Proposition 3.2 (correctness of Search). Let G ∈ C be a graph. Let

E = e1, . . . , en be an edge enumeration of L and let j ∈ VL be an initial

node of E. Let v ∈ VG be a node in G. Then Search(j, v,G,E) returns the

set of all injections h : L→ G such that hV (j) = v.

Proof. Termination is guaranteed by the fact that a given morphism can

only be extended to a finite number of distinct new morphisms, bounded by

the number of nodes in the target graph.

Soundness. The sets Ai for 0 ≤ i ≤ n, must by the definition of Search

consist only of partial injections from L to G, so the same holds for the

returned set An. For all injections h ∈ A0 it holds that hV (j) = v, so by

the definition of morphism extension, this must also hold for all morphism

in all other sets Ai for i ≤ n.

All that remains then is to show that the morphisms in An are total. It

follows by induction on the definition of morphism extension that all mor-

phisms in set Ai are partial injective morphisms with edge-domain e1, . . . , ei

44

and node-domain of the sources and targets of e1, . . . , ei. By the require-

ment for left-hand side connectedness, all nodes in the graph must be the

source or target of some edge ei. Therefore, the returned set An contains

only injective morphisms with edge-domain EL and node-domain VL, i.e.

total injective morphisms.

Completeness. For i = 1, . . . , n, let Li be the subgraph of L consisting of

the edges e1, . . . , ei and their incident nodes. Also, let L0 be the subgraph

consisting of just the start node i. A straightforward induction on i shows

that for i = 0, . . . , n,

{g : L ⇀ G | gV (j) = v and h is injective and dom(h) = Li} ⊆ Ai.

Since Ln = L by the structure of L, it follows that An contains all total

injections from L to G.

We now define the algorithm Fast-Match (Algorithm 3.4), which solves

the graph matching problem for left-connected graph transformation rules.2

This algorithm solves the graph matching problem by searching, for each

node in the host graph, for all matching morphisms that include the identi-

fied node in their range.

Algorithm 3.4 (Matching algorithm Fast-Match). The algorithm works

for the fixed rule r and an input graph G ∈ C, as stated in the graph

matching problem. It assumes an edge enumeration E = e1, . . . , en of L,

and a start node j ∈ VL such that j is an initial node for E.

Fast-Match(j,G,E)

1 A← ∅

2 for each v in VG

3 do H ← Search(j, v,G,E)

4 A← A ∪H

5 return A

Proposition 3.3 (correctness). Algorithm Fast-Match solves the graph

matching problem.

2It would be easy to merge the algorithm Search into Fast-Match. The algorithms
are given separately rather than merged because Search is reused in several later algo-
rithms.

45

Proof. We have shown in Proposition 3.2 that the auxiliary algorithm Sear-

ch constructs the set of all morphisms h : L→ G that matches the left-hand

side start node j ∈ VL to a particular host graph start node v ∈ VG. Fast-

Match applies Search in turn to every node v ∈ VG. Soundness therefore

follows immediately from the correctness of Search. Completeness follows

from the fact that each morphism h must include some node as the value

of hV (j); applying Search to this as the start node will construct the

corresponding set of morphisms.

We now define the branching factor for an edge enumeration of r’s left-

hand side over a target graph. The branching factor determines the worst-

case performance of algorithm Search, and so determines the conditions

under which it terminates in constant time.

Definition 3.4 (branching factor). Let G ∈ C be a graph. Let E =

e1, . . . , en be an edge enumeration of L. Let h : L ⇀ G be a partial injection

such that dom(hE) = {e1, . . . , ek} for some k such that 1 ≤ k < n, and for

any node v, v ∈ dom(hV) if and only if v is the source or target of an edge

in dom(hE). The out-branching factor of hk is the number of edges e ∈ EG

with label l(ek+1) and source hV (s(ek+1)). The in-branching factor is the

number of edges e ∈ EG with label l(ek+1) and target hV (t(ek+1)). The

local branching factor for hk is the minimum of the out- and in-branching

factors, if they are defined. The branching factor of E over graph G is the

maximum local branching factor for any hk with 1 ≤ k < n.

Example 3.3 (branching factor). Left: a left-hand side graph L. Right: a

graph G ∈ C. We can use the edge labels of L to stand for its edges as they

are distinct for distinct edges. We assume the edge enumeration [a, b] and a

partial injection h such that dom(hE) = {a}. The injection hV maps node

l1 to t1 and node l2 to t2.

	
b

l1 l2 l3
 b

b

b

t1 t2

The out-branching factor for h is 3, as the next edge in the enumeration is

labelled b, and there are three edges in the host graph with label b outgoing

46

from node t2. The in-branching factor is undefined, as l3 is not in the

domain of the morphism. The local branching factor is therefore 3. This is

the maximum of any of the partial morphisms from L to G so the overall

branching factor is also 3.

Note that, if there is a maximal node degree d in C, every edge enumer-

ation of rule r has a branching factor b ≤ d over all G ∈ C.

Proposition 3.4 (complexity of Search). If edge enumeration e1, . . . , en

of the left-hand side graph L has branching factor b over graph G ∈ C then

algorithm Search terminates in time at most O(
∑n

i=0 bn). The maximum

size for the resulting set of morphisms is bn.

Proof. The initialisation of the algorithm constructs the set A0, which con-

tains at most one partial morphism, and which (under Assumption 3.1) can

be constructed in constant time.

A single run of the algorithm involves n iterations of the main loop, each

of which attempts to extend all morphisms h in Ai−1 by edge ei. By the

definition of an edge enumeration, h must be defined for either sL(ei), or

tL(ei), or both. By the definition of branching factor there can be at most

b distinct edges with the same label as ei attached to either hV (sL(ei)), or

hV (tL(ei)), meaning that there can be at most b distinct new injections h′

constructed from h. It follows |Ai| ≤ b|Ai−1|. Under Assumption 3.1, the

set of extensions to each h can be identified time O(b), so the time required

to update Ai−1 to Ai is O(b|Ai−1|).

Thus we obtain the following upper bound for the overall running time:

O(1+b|A0|+b|A1|+ . . .+b|An−1|). By recursively expanding each term |Ai|

to its maximal size, we arrive at the expression O(1 + b + b2 + . . . + bn) =

O(
∑n

i=0 bi). Because the final term of the expansion also gives the maximal

size of the resulting set, this also shows that maximal size of An is bn.

Theorem 3.5 (complexity of Fast-Match). If edge enumeration E =

e1, . . . , en of the left-hand side graph L has branching factor b over graph

G ∈ C, then Fast-Match requires time O(|VG|
∑n

i=0 bi) at most. The

maximal size for the resulting set A is |VG|b
n.

Proof. We have shown in Proposition 3.4 that the time bound for algorithm

Search given a branching factor of b is O(
∑n

i=0 bn), and that it constructs at

most bn distinct morphisms. The algorithm Fast-Match applies Search

47

to each node v in VG in turn. We can therefore conclude that the algorithm

requires time O(|VG|
∑n

i=0 bi) at most, and that the maximal size for the

resulting set of morphisms An is |VG|b
n.

Note that n is constant according to the graph matching problem. Hence,

if b is bounded then the time bound given in Theorem 3.5 is linear.

The time complexity results of Proposition 3.4 and Theorem 3.5 require

the existence of an edge enumeration with a bounded branching factor over

all members of C. This is a semantic condition, meaning that a complex

proof is required to show that the condition holds for a given graph class.

We now present several simple syntactic conditions on rule r and class

of graphs C that ensure that an edge enumeration with bounded branching

factor over all graphs in C can be constructed. These conditions have the

main advantage that it is simple to check graph rules and graph classes for

conformance to the conditions.

Condition 1 (Bounded degree).

There exists an integer d ≥ 0 such that for every graph G in C,

the degree of every node v ∈ VG is bounded by d.

Lemma 3.6 (Condition 1 branching factor). If Condition 1 is satisfied, all

edge enumerations of r have branching factor of at most d over all graphs

in C.

Proof. The degree-bound ensures that for any node in a graph G ∈ C and

any edge label, there can be no more than d attached edges with this la-

bel. Therefore, because the branching factor is defined by the number of

attached edges with a particular label, the branching factor b for any edge

enumeration over any graph in C must be less than or equal to d.

In the next condition we restrict only the out-degree of nodes. This has

the interesting consequence that the in-degree of the node can be unbounded,

but matching still only requires linear time.

Condition 2 (Bounded out-degree).

(1) There exists a node s in L such that every node in L is reachable

from s.

(2) There exists an integer d ≥ 0 such that for every graph G in C,

the out-degree of every node v ∈ VG is bounded by d.

48

Lemma 3.7 (Condition 2 branching factor). If Condition 2 is satisfied,

there exists an edge enumeration E = e1, . . . , en with branching factor at

most d over all graphs in C.

Proof. The reachability property ensures that an edge enumeration E =

e1, . . . , en can be constructed such that for i = 2, . . . , n, the source of ei

is the source or target of any of the edges of e1, . . . , ei−1. As a result of

the out-degree bound, the local branching factor for any morphism h and

edge ei with the source of ei already matched in h cannot be larger than d.

The structure of the edge enumeration ensures that any partial morphism

h constructed from a partial edge enumeration e1, . . . , ei must include the

source node for ei+1. Therefore, the branching factor b over any G ∈ C of

such an enumeration must be less than or equal to d.

Proposition 3.8. If either Condition 1 or Condition 2 is satisfied, the graph

matching problem for rule r and graph G ∈ C can be solved in time at most

O(|VG|
∑n

i=0 di), or linear time. The resulting set contains at most |VG|d
n

injections.

Proof. Immediate consequence of Theorem 3.5 and Lemmas 3.6 and 3.7.

The next condition requires that out-edges are distinctly labelled. This

results in an improved time complexity compared to the results proved in

Proposition 3.8 for Conditions 1 and 2.

Condition 3 (Distinctly-labelled out-edges).

(1) There exists a node s in L such that every node in L is reachable

from s.

(2) For every graph G in C, distinct edges outgoing from the same

node have distinct labels.

This condition is satisfied by the graphs and graph transformation rules

we use in Chapters 9 and 10 to model pointer structure rewriting. This is

because data-structures can include only a single outgoing field of each type

(corresponding to a single out-edge with each label), but can be the target

of an unbounded number of other data-structure fields (corresponding to

an unbounded in-degree). As a result, the time complexity bound that we

prove for this condition holds in our model of pointer rewriting.

Note that Condition 3 implies Condition 2, which can be seen by choosing

bound d as the size of CE. The converse does not hold in general. Condition

49

1 is incomparable with Conditions 2 and 3, because while its restriction on

the degree of nodes is stronger, its restriction on the left-hand sides of rules

is weaker.

Lemma 3.9 (Condition 3 branching factor). If Condition 3 is satisfied,

there exists an edge enumeration E = e1, . . . , en with branching factor 1

over all graphs in C.

Proof. As with Condition 2, the reachability ensures that an enumeration

e1, . . . , en can be constructed such that for i = 2, . . . , n, the source of ei is the

source or target of one of the edges of e1, . . . , ei−1. Due to the distinctness

of outgoing edge labels the local branching factor for any morphism h and

edge ei with the source of ei already matched in h cannot be larger than

1. As a result, such an edge enumeration must have an overall branching

factor of 1.

Proposition 3.10. If Condition 3 is satisfied, the graph matching problem

can be solved in time O(n|VG| + |VG|), or linear time. The resulting set

contains at most |VG| injections.

Proof. Immediate consequence of Theorem 3.5 and Lemma 3.9.

Propositions 3.8 and 3.10 show that the graph matching problem can

be solved in linear time under Conditions 1, 2, and 3. This is a substantial

improvement on the polynomial time required to solve the graph matching

problem in general.

Conditions 1, 2 and 3 do not alone guarantee that an application of rule

r preserves the constraints on C expressed in the conditions. To preserve

Condition 1, it suffices that for each node v in K, degR(v) ≤ degL(v). For

properties (1) and (2) of Condition 2, it suffices to require that for each node

v in K, outdegR(v) ≤ outdegL(v). To ensure the preservation of properties

(1) and (2) of Condition 3 it suffices to require that for each node v in K

and label l there exists an l-labelled node in R with source v only if there

exists such an edge in L.

3.3 Fast rooted graph transformation

We now present conditions on graph transformation systems which ensure

that rules can be executed in constant time. Intuitively, these systems con-

50

form to the conditions which ensure that left-connected rules apply in linear

time, and the new requirement that each rule has a root node which can be

matched to only a single node in the target graph. Under these conditions,

the overall space of possible matches is of constant size, which means that

constant time matching can be achieved.

Constant time rule application through the use of roots is of interest

to us for two reasons, aside from the intrinsic merit of improving the time

complexity of rule application. Firstly, rooted rules useful for modelling of

pointer rewriting, as we do in Part IV of this thesis. Second, in Chapter 4

rooted rules are used as the basis for efficient language recognition systems.

In these rooted recognition systems, the root is explicitly used to control the

order of application of reduction rules.

Definition 3.5 (root label, root node, rooted rule). A node label ̺ in graph

G is a root label if G contains exactly one ̺-labelled node. A node v in a

graph G is a root if it has label ̺. A graph G is ̺-rooted if ̺ is a root label

for G. A rule r = 〈L← K → R〉 is a ̺-rooted rule if (1) r is a left-connected

rule, and (2) L is ̺-rooted.

Assumption 3.3. For the rest of this section, let ̺ be a node label and C

a graph class such that ̺ is a root label for every graph in C. Let r = 〈L←

K → R〉 be a fixed C-preserving ̺-rooted rule.

Any matching morphism between the target graph G ∈ C and the rule

r graph must match the ̺-labelled nodes in L and G together. This can

cut down substantially the space of possible matches. As the two ̺ labelled

nodes must be matched together, they can be used as the start nodes in

a single call to Search (Algorithm 3.3), which removes the need for the

algorithm Fast-Match.

We now prove that a single call to Search suffices to solve the graph-

matching problem. We also show that the existence of an edge enumeration

with a the ̺-labelled node as an initial node and bounded branching factor

suffices to ensure constant time termination for Search. (See Proposition

3.3 and Theorem 3.5 for the analogous results for left-connected graph trans-

formation rules).

Proposition 3.11 (correctness under rootedness). Let E = e1, . . . , en be

an edge enumeration such that the ̺-labelled node in L is an initial node for

51

E
1

E
2

E
n n

⇒

E
1

E
2

n

Figure 3.1: Rooted rule removing an element from a linked list.

E. Let j be the ̺-labelled node in L and v be the ̺-labelled node in G. Then

the call Search(j, v,G,E) solves the graph matching problem for rule r.

Proof. By the definition of a root label, there exists exactly one node j in L

and exactly one node v in G such that l(j) = l(v) = ̺. For this reason, for

any morphism h : L→ G it must be true that hV (j) = v. We have shown in

Proposition 3.2 that the call Search(j, v,G,E) returns the set of all total

injective morphisms h : L→ G such that hV (i) = v. Thus the Search solves

the graph matching problem.

Proposition 3.12 (complexity under rootedness). If the enumeration E =

e1, . . . , en has a branching factor of b over graph G, and the root node labelled

̺ in L is an initial node for E, then the graph matching problem can be solved

by algorithm Search in time O(
∑n

i=0 bi). The maximal size of the resulting

set of matching morphisms is bn.

Proof. Immediate consequence of Proposition 3.11 and Proposition 3.4.

Note once again that n is constant according to the graph matching

problem. Hence, if b is bounded then the time bound of Prop. 3.12 is

constant – albeit a possibly large one.

Example 3.4 (rooted rule). The root node in a rooted graph transformation

rule can be seen as a handle into the graph, used to select an application

area for the rule. For example, the rule shown in Figure 3.1 removes a single

element from a singly-linked list. The root node, shown as a small grey node,

identifies the preceding node from the list element which will be removed.

We now give sufficient syntactic conditions on rule r and class of graphs

C to ensure that an edge enumeration with bounded branching factor over all

graphs in C can be constructed. These conditions are based on Conditions 1,

2, and 3 given in §3.2. We begin by modifying Condition 1 to give Condition

R1.

52

Condition R1 (Bounded degree with roots).

There exists an integer d ≥ 0 such that for every graph G in C,

the degree of every node v ∈ VG is bounded by d.

Lemma 3.13 (Condition R1 branching factor). If Condition R1 is satisfied,

there exists an edge enumeration with the root of L as an initial node and

branching factor of at most d over all G ∈ C

Proof. By Lemma 3.6 we know under Condition 1 all edge enumerations

have branching factor less than d over graphs in C. The general assumption

that rule r is left-connected ensures that an edge enumeration exists with a

root-labelled node as its initial node. Condition R1 implies Condition 1, so

this enumeration must have a bounded branching factor over all G ∈ C.

Conditions 2 and 3 are modified in a similar way to give conditions R2

and R3. While Conditions 2 and 3 require that every node in L is reachable

from some arbitrary node, Conditions R2 and R3 require that every node is

reachable from the root-labelled node in L.

Condition R2 (Bounded out-degree with roots).

(1) There exists a node s in L with label ̺ such that every node in L

is reachable from s.

(2) There exists an integer d ≥ 0 such that for every graph G in C,

the out-degree of every node v ∈ VG is bounded by d.

Lemma 3.14 (Condition R2 branching factor). If Condition R2 is satisfied,

then there exists an edge enumeration with branching factor at most d over

all graphs in C.

Proof. The reachability property ensures that an edge enumeration E =

e1, . . . , en exists such that the root-labelled node is an initial node, and for

i = 2, . . . , n, the source of ei is the source or target of any of the edges of

e1, . . . , ei−1. By the same argument as used in Lemma 3.7, this enumeration

must have a branching factor less than or equal to d over all G ∈ C.

Proposition 3.15. If either Condition R1 or Condition R2 is satisfied, the

graph matching problem can be solved in time at most O(
∑n

i=0 di). The

resulting set contains at most dn injections.

Proof. Immediate consequence of Proposition 3.12 and Lemmas 3.13 and

3.14.

53

Condition R3 (Distinct out-labels with roots).

(1) There exists a node s in L with label ̺ such that every node in L

is reachable from s.

(2) For every graph G in C, distinct edges outgoing from the same

node have distinct labels.

Lemma 3.16 (Condition R3 branching factor). If Condition R3 is satisfied,

there exists an edge enumeration E = e1, . . . , en with branching factor 1 over

all graphs in C.

Proof. The reachability property ensures that an edge enumeration E =

e1, . . . , en exists such that the root-labelled node is an initial node, and for

i = 2, . . . , n, the source of ei is the source or target of any of the edges of

e1, . . . , ei−1. By the same argument used in Lemma 3.9, this enumeration

must have branching factor 1 over all graphs in C.

Proposition 3.17. If Condition R3 is satisfied, the graph matching problem

can be solved in time O(n). The resulting set contains at most one injection.

Proof. Immediate consequence of Proposition 3.12 and Lemma 3.16.

Propositions 3.15 and 3.16 demonstrate that Conditions R1, R2 and

R3 are sufficient to ensure termination in constant time. Note that this is a

considerable improvement on the polynomial time complexity of unrestricted

graph transformation, and also an improvement on the linear termination

time possible under Conditions 1, 2, and 3.

Preservation of Conditions R1, R2 and R3 is largely similar to the re-

quirement for preservation given at the end of chapter 3 for the correspond-

ing unrooted conditions. To preserve the ̺-labelled node as a root node, it

suffices to require that exactly one ̺-labelled node is present in both L and

R.

3.4 Multi-step graph transformation

In many applications of graph transformation rules are not applied individ-

ually and in isolation. Rather they are applied in sets and in sequence: the

graph resulting from one rule application becomes the input graph for the

next rule application. So far in this chapter we have discussed conditions

54

that improve the application time of individual graph transformation rules.

This section discusses the efficient sequential application of sets of graph-

transformation rules. We examine two approaches to efficient multi-step

graph transformation, one rooted and one unrooted, both of which ensure

linear time termination.

We first define formally the multi-step application problem.

Multi-Step Graph Transformation Problem (MGTP).

Given: A Graph class C and a set of left-connected, C-preserving

rules R.

Input: A Graph G ∈ C and a length l ≥ 0.

Output: A Graph Hi ∈ C which is the result of derivation sequence

G ⇒R H1 ⇒R H2 . . . ⇒R Hi where either i = l, or i < l

and H is irreducible w.r.t R.

Intuitively, in this problem we are given a set of rules, an initial graph,

and a sequence length bound. We must construct an arbitrary sequence of

rule applications of up to the given length, starting from the given graph,

using the rules in the given set. Any derivation shorter than the given length

is also acceptable if it results in an irreducible graph. This avoids the need

for backtracking by allowing ‘stuck’ configurations to be valid results.

Backtracking must be avoided if we want to achieve linear-time termi-

nation, because even quite heavily restricted graph transformation systems

with back-tracking have an exponential time complexity. For example, if

each iteration of the derivation sequence produces two distinct possible re-

sults, then there are at most 2l distinct derivations of length l. If all these fail

on the final step of the derivation sequence, the search for a valid derivation

sequence of length l requires the construction of O(2l) graphs, even without

the cost of matching.

In this section we consider both rooted and unrooted multi-step graph

transformation rules. The rooted case is a simple application of the results

given in §3.3, while the unrooted case requires a new application algorithm.

For this reason we consider the simpler rooted case first.

We have shown in Proposition 3.12 that a rooted rule can be applied to

a graph in constant time given a rooted edge enumeration with a bounded

branching factor over the graph. As any derivation sequence consists of a se-

quence of single rule applications, linear-time termination can be achieved by

applying this result directly to the multi-step graph transformation prob-

55

lem. This still holds when we construct the sequence by choosing non-

deterministically from a set of rules, as the size of the rule-set is fixed under

the multistep graph transformation problem.

Assumption 3.4. For the rest of this section, let ̺ be a node label and C̺

a graph class such that ̺ is a root label for every graph in C̺. Let R̺ be a

fixed set of C-preserving ̺-rooted rules.

In the following lmax̺ refers to the number of nodes in the largest left-

hand side of the rules in R, and rulemax̺ refers to sum of the number of

nodes in the left- and right-hand sides of the largest rule in R.

Proposition 3.18 (complexity of the MGTP with rooted rules). If there

exists for each rule r = 〈L ← K → R〉 in R̺ an edge enumeration Er

with the ̺-labelled root of L as an initial node and branching factor less

than b over all graphs G in C̺, then the MGTP can be solved in time

O(l(|R̺|
∑lmax̺

i=0 bi + rulemax̺|R̺|b
lmax̺)).

Proof. By applying Proposition 3.11 we know that we can search for a match

for any rule r ∈ R̺ or show that no such match exists in time at most

O(
∑lmax̺

i=0 bi). In the worst case we have to do this for every rule, for a

time complexity of O(|R̺|
∑lmax̺

i=0 bi). Once the set of potential matches has

been constructed, by Proposition 3.1 we can attempt to apply each match

in time O(lmax̺). As each rule can result in at most blmax̺ morphisms, this

requires time O(lmax̺|R̺|b
lmax̺) in total. A derivation sequence of length

l requires at most l such searches. The time bound O(l(|R̺|
∑lmax̺

i=0 bi +

lmax̺|R̺|b
lmax̺)) follows immediately.

If b is a constant, under the multi-step graph transformation problem,

C = |R̺|
∑lmax̺

i=0 bi + rulemax̺|R̺|b
lmax̺ is a constant. Substituting in C

gives time bound O(C.l), or linear time.

In §3.3 we gave Conditions R1, R2 and R3 which ensure the existence

of an enumeration with a bounded branching factor for a single rooted rule

and graph class. These conditions can also be applied in the context of

multi-step graph transformation. We say that a set of rules satisfies one of

the conditions if every rule in the set satisfies the condition.

Proposition 3.19. If R̺ and C̺ satisfy Condition R1, R2 or R3, then the

MGTP can be solved in time O(l).

56

Proof. Immediate consequence of Lemmas 3.7 and 3.9, and Proposition 3.18.

3.4.1 Amortising the cost of matching

We now consider an algorithm that permits fast multistep graph transfor-

mation for left-connected rules.

Assumption 3.5. For the rest of this section, let R be a set of left-

connected, C-preserving rules. In the following lmax refers to the number

of nodes in the largest left-hand side and rmax the number of nodes in the

largest right-hand side of the rules in R. rulemax refers to sum of the number

of nodes in the left- and right-hand sides of the largest rule in R.

We have shown in §3.2 that left-connected rules can be applied in linear

time given the existence of an edge enumeration with bounded branching

factor. Intuitively this would seem to imply that solving the multi-step

graph transformation problem must require polynomial time, as each of the

l steps must require at worst linear time.

However, if for every node in the left-hand side of every rule in R there

exists an edge enumeration with a bounded branching factor and the left-

hand side node as its initial node, then the MGTP can in fact be solved in

linear time. Condition 1, described in §3.3, ensures the existence of such

an enumeration bound, and so ensures linear time termination of our new

algorithm Multistep-Apply .

The advantage of this algorithm lies in its time complexity, which is con-

siderably improved over a näıve algorithm that applies each rule in isolation

and shares no information between steps in the derivation sequence. For

comparison, we now define an example of such a näıve algorithm, making

use of the algorithm Fast-Match (Algorithm 3.4).

Algorithm 3.5 (näıve multistep application algorithm). This algorithm

takes arguments in the same format as Multistep-Apply.

Multistep-Näıve(H0, R, l, E)

1 for i← 1 to l

2 do for r = 〈L← K → R〉 in R

3 do pick s from L

4 M ←M ∪ Fast-Match(s,Hi−1, E[r, s])

57

5 if M = ∅

6 then return Hi−1

7 else pick (h, r) from M

8 Hi ← Apply(Hi−1, r, h)

9 return Hl

The termination time of Multistep-Näıve depends on the maximum

size of the intermediate graphs constructed during the derivation. The max-

imum possible size of any graph constructed on a derivation of length l from

the graph H0 ∈ C is given by the function maxsize(H0, l) = |H0| + l.rmax.

This function is correct because any application of a rule in R can add at

most rmax nodes to the existing graph.

Even assuming an array of edge enumerations with branching factor

bounded by b over all graphs in C, Multistep-Näıve has worst-case ter-

mination time of O(l.|R|.maxsize(H0, l).
∑

lmax

i=0 bi) (consequence of Theorem

3.5). Under Condition 1, this gives polynomial time termination. Our more

sophisticated algorithm Multistep-Apply improves on this because it per-

mits linear time termination (assuming an enumeration branching factor

bound).

This result holds even when each individual rule application requires

at worst linear time for application. It is achieved by sharing informa-

tion between iterations of the derivation by maintaining a set of unsearched

nodes. This amortises the high cost matching over the whole derivation.

Sharing this information between steps requires new application algorithm

Multistep-Apply, which is based on the algorithm of [1].

Multistep-Apply maintains a search set consisting of a set of un-

searched host graph nodes. In each iteration of the algorithm an unsearched

node in the host graph is first selected. Then for each rule in R the set of

matches that include the selected node are constructed. If a match is dis-

covered then the particular rule is applied, and the algorithm begins again

on the new graph. If no matches that include the selected node exist for any

rule in R, then the node is removed from the search set and a new node is

selected.

When the graph is updated, any match between a rule in R and the new

graph not already present in the previous graph must include some of the

nodes accessed by the update, so these are added to the search-set.

58

The algorithm is guaranteed to terminated in a linearly-bounded number

of iterations, even without a bound on the enumeration branching factor.

This is because each rewrite can add only add a bounded number of new

nodes to the graph, and so the search-set can only increase by a bounded

amount in each iteration. However a constant bound on the branching fac-

tor is required to ensure that the algorithm Search, called by Multistep-

Apply, terminates in constant time, which ensures overall linear time ter-

mination.

We first define the auxiliary algorithm Apply*, which extends the rule

application algorithm Apply. Apply* differs from in Apply in that that

it returns two values rather than one. In addition to the derived graph,

Apply* also constructs the set of nodes which constitute the image of the

rule’s right-hand side in the new graph. This set is used in the algorithm

Multistep-Apply to locate the nodes accessed by each iteration of the

algorithm.

Algorithm 3.6 (algorithm Apply*). The algorithm Apply*(G, r, h) ex-

tends the algorithm Apply (Alg. 3.2). As with Apply, the algorithm takes

as its arguments a graph G ∈ C, C-preserving rule r = 〈L ← K → R〉

and injection g : L → G satisfying the dangling condition. The algorithm

constructs the unique (up to isomorphism) double-pushout required for ap-

plication of rule r, as given by the following diagram. It is implemented in

exactly the same way as described for Apply.

L K R

G D H

g k

Apply* returns a pair of values: (1) the uniquely-determined resulting

graph H, and (2) the set ran(kV) of nodes in H matched to R by the result

morphism k.

We now give algorithm Multistep-Apply, which solves the multi-step

graph transformation problem for left-connected rules. This algorithm uses

the general approach of the algorithms given in the work on so-called special

recognition systems in [1] and [11], but applies it to our domain of general

rewrite systems based on left-connected rules, rather than just the domain

of graph-language recognition. The differences between our algorithm and

the algorithm of [1] are described in detail in §5.3.

59

Algorithm 3.7 (Multistep-Apply). This algorithm takes as its input a

nonempty graph H0 ∈ C, a set of left-connected, C-preserving rules R, a

derivation-sequence length l ≥ 0, and an array of edge enumerations E[r, s],

where index values r and s consist of a rule r ∈ R and a start node s in the

left-hand side of r.

Multistep-Apply(H0, R, l, E)

1 i← 1

2 U ← VH0

3 while U 6= ∅ and i 6= l

4 do M ← ∅

5 pick v from U

6 for r = 〈L← K → R〉 in R

7 do for s in VL

8 do S ← Search(s, v,Hi−1, E[r, s])

9 M ←M ∪ {(h, r) | h ∈ S ∧Dangle(Hi−1, r, h)}

10 if M = ∅

11 then U ← U \ {v}

12 else i← i + 1

13 pick (h, r) from M

14 U ← U \ dom(hV)

15 (Hi, P)← Apply*(Hi−1, r, h)

16 U ← U ∪ P

17 return Hi

The definition of Multistep-Apply we give here first picks a node in the

set of candidate nodes, and then constructs all possible matches for all rules

inR that can be discovered from this location. Only then does the algorithm

check the dangling condition for any of the matches. This algorithm is less

efficient in many cases than the alternative version that checks the dangling

condition for each match as it is constructed. This backtracking version

of Multistep-Apply eliminates candidate matches earlier, and thus often

finds a successful match more quickly.

In addition, the version of Multistep-Apply given here often finds

matches more than once while searching from different starting points. The

backtracking version of Multistep-Apply avoids some of this duplication,

60

although failed partial matches can still appear several times.

However, the backtracking version of Multistep-Apply is consider-

ably harder to understand intuitively, and the version of Multistep-Apply

given here is in any case a large and complex algorithm. The worst-case

time complexity result given below in Theorem 3.23 holds for both versions

of the algorithm. To make our explanation simpler we have therefore given

the comparatively inefficient version of the algorithm. Our aim in giving

the algorithm is to communicate the approach embodied in it, rather than

present the most highly optimised version possible.

The time complexity results given below depend on the assumption that

insertion and removal of nodes from the working set U requires only con-

stant time. To achieve this, we assume that the nodes of the graph include

in their representation both ‘next’ and ‘previous’ fields, in addition to the

representation of graph edges. The working set of graph-nodes U can then

be stored as a circular doubly-linked list embedded in the graph itself, with

each graph-node storing pointers to two adjacent nodes. Such a list per-

mits both constant time insertion and constant-time removal of any node.

Such a node representation can be constructed in time O|H0| if the graph

is not already in this format, so this assumption does not affect linear time

termination results given Theorem 3.23.

Intuitively, the following lemma expresses the fact that, given a deriva-

tion G⇒ H, any morphisms between the left-hand side of some rule r′ and

H which weren’t present between r and G must have been generated by the

derivation. Direct derivations under the double-pushout approach are local,

in the sense that only the portion of the graph matched by the left-hand

side is modified. As a result, any ‘new’ morphism must include in its range

a node matched to the right-hand side graph of the rule in the derivation.

Lemma 3.20 (new morphisms). Let r = 〈L ← K → R〉 and r′ = 〈L′ ←

K ′ → R′〉 be rules. Let G ⇒r H be a derivation for r, and let k : R → H

be the result morphism for the derivation. Let trG⇒H be the corresponding

track-morphism. Let h′ : L′ → H be a morphism such that h′ 6= trG⇒H ◦ h

for all h : L′ → G. Then then there must exist a v in ran(h′
V) such that v

is also in ran(kV).

Proof. Suppose no node exists in ran(h′
V) that is also in ran(kV), so all nodes

in ran(h′
V) are also in ran(trG⇒H). As the relationships between nodes are

61

preserved outside of the domain of the right-hand side, we can construct an

h such that h′ = trG⇒H ◦ h by simply applying the inverse of trG⇒H to h′,

which contradicts our assumption that h′ 6= trG⇒H ◦h for all h : L′ → G.

Theorem 3.21 (correctness). The set of possible results for the nondeter-

ministic algorithm Multistep-Apply is the set of possible results for the

multi-step graph transformation problem.3

Proof. Algorithm soundness follows trivially from the soundness of algo-

rithms Search (proved in Proposition 3.2) and Dangle and Apply*.

To prove completeness we must show that if a graph is a solution to

the multi-step graph transformation problem, then it is a possible result for

the algorithm. We prove this by showing that the set U contains enough

nodes to ensure that any matching morphism can be discovered by applying

Search to some node in U .

We prove this by showing that the algorithm maintains the following

invariant I. Here i ≥ 1 is the current iteration in Multistep-Apply, where

the working graph Hi is the result of derivation sequence H0 ⇒R H1 ⇒R

. . .⇒R Hi.

I: For every rule r = 〈L ← K → R〉 in R and every

morphism h : L→ Hi−1 there must exist a node in U

that is a member of ran(hV).

We now show that I is preserved by the main loop of Multistep-Apply.

When the algorithm starts, i = 1 and H0 is the input graph and U = VH0
.

Therefore by construction the property holds. Now consider the inductive

case. An iteration of the main loop begins by selecting some node v ∈ U .

It then executes the algorithms Search and Dangle on this node for all

rules and left-hand side initial nodes, and stores the results in set M . There

are two possible results for the search:

1. M = ∅. By the completeness of Search and Dangle, no pair (h, r) of

a rule r ∈ R and a morphism h exists such that v ∈ ran(h) and h is a

matching morphism for r in Hi which satisfies the dangling condition.

3Note that this is a slightly stronger result than simple deterministic correctness. As
well as knowing that Multistep-Apply will produce some correct solution to the MGTP,
we want to know that any of the possible correct results for the problem can be reached
non-deterministically by the algorithm.

62

The node v is removed from U , which preserves the invariant because

no morphism exists starting from the selected node.

2. M 6= ∅. By the correctness of Search and Dangle, the set M consists

of all pairs (h, r) of a rule r ∈ R and a morphism h such that v ∈ ran(h)

and h is a matching morphism for r in Hi which satisfies the dangling

condition. The algorithm selects an arbitrary member (h, r) ∈M and

constructs derivation Hi ⇒r,h Hi+1 using algorithm Apply*.

Apply* also constructs the result morphism k for the derivation and

adds the nodes ran(kV) to U . By Lemma 3.20, any matching morphism

for rule r′ ∈ R in Hi+1 not present between r′ and Hi must include

at least one node in ran(kV). Therefore, adding these nodes to U

preserves the invariant.

As a consequence of invariant I and the correctness of Search, at any

iteration of the algorithm, any morphism between rule r and the current

graph Hi can be discovered by non-deterministically applying Search to

some node in U . Any node in U can be selected non-deterministically, so by

induction on the length of a derivation sequence any derivation up to length

l can be constructed. This means that any solution to the MGTP can be

constructed, and so completes the proof.

Theorem 3.22 (complexity). Let H0 be a graph in C, and let l be a fixed

sequence length. If the algorithm Multistep-Apply is called with an array

of edge enumerations E such that each edge enumeration has a branching

factor less than b over every G ∈ C, then it terminates in time O((|VH0
| +

l.rmax + l)(|R|.lmax.
∑

lmax

i=0 bi) + l(rulemax + rmax)).

Proof. Each iteration of the main loop either removes a node from U or

increments the counter i and adds at most rmax nodes to U . As i must be

less than l, over the algorithm execution at most l.rmax nodes can added to

U . Hence there can be at most |VH0
|+ l.rmax+ l iterations of the main loop.

Each algorithm iteration applies algorithm Search to graph Hi−1 for

some node v ∈ U and for every left-hand size node of every rule r ∈ R. The

maximal size of any left-hand side is lmax. If the edge enumerations used

by Search have a branching factor of at most b, by Proposition 3.4 each

iteration of the algorithm requires time O(|R|.lmax.
∑

lmax

i=0 bi) to perform all

the applications of Search.

63

In addition, at most l iterations of the loop use a morphism constructed

by Search to construct a derivation using algorithm Apply*. By Propo-

sition 3.1 each application of a rule r requires time O(|r|), for a maximum

time over the whole algorithm execution of O(l.rulemax). Each of these

rule-applying iterations also insert a maximum of rmax nodes into the set

U , which in the worst case requires time O(rmax).

Combining all of these results together produces an overall algorithm

time bound of O((|VH0
|+l.rmax+l)(|R|.lmax.

∑

lmax

i=0 bi)+l.(rulemax+rmax)).

Theorem 3.23. If C and R satisfy Condition 1, then the multi-step graph

transformation problem can be solved in linear time.

Proof. Under the specification of the multistep graph transformation prob-

lem the terms C1 = (|R|.lmax.
∑

lmax

i=0 bi) and C2 = (rulemax + rmax) are

constant. As a result, the time bound O((|VH0
|+ l.rmax+ l)C1 + l.C2) given

by Theorem 3.22 is equivalent to O(l), or linear time.

By Lemma 3.6, if Condition 1 is satisfied for all rules in R and graph

class C, then every edge enumeration of a rule in R has a branching fac-

tor less than the constant bound d over any graph in C. As a consequence

of Theorem 3.22, Condition 1 therefore allows the construction of an ar-

ray of edge enumerations which ensures that algorithm Multistep-Apply

terminates in linear time.

64

Chapter 4

Efficient graph recognition

One application of graph transformation rules is in the definition of graph

languages by so-called reduction systems. These recognise languages by re-

duction; language members are reduced to a final accepting graph by re-

peated application of a set of reduction rules. Reduction systems are the

converse notion to conventional graph grammars, in that a grammar con-

structs a language by derivation from an initial graph. For any reduction

system an equivalent graph grammar can be constructed, and vice versa.

Reduction systems are used in Part IV of this thesis to specify the proper-

ties of pointer structures.

One advantage of reduction systems over grammars is that a reduc-

tion system defines an implied algorithm that checks language membership.

Membership can be checked for a graph by repeatedly applying reduction

rules, although backtracking may be required. However, this membership

checking algorithm is expensive even for recognition systems that avoid the

need for backtracking, because (as discussed in the previous chapter) each

rule application requires at worst polynomial time.

In the previous chapter we examined several approaches that improved

the worst-case application time of graph transformation rules. In this chap-

ter we show that these approaches can be applied to reduction systems,

allowing us to define fast reduction systems that have an efficient member-

ship checking algorithm.

Two kinds of fast reduction system are described – rooted and unrooted

– corresponding to the two approaches to solving the multi-step graph trans-

formation problem given in §3.4. Despite the restricted form of these fast re-

65

duction systems, they are surprisingly expressive, allowing linear-time recog-

nition of both context-free and context-sensitive graph languages.

The structure of the chapter is as follows. Section 4.1, introduces rooted

graph reduction specifications (RGRSs) that define graph languages of rooted

graphs. We identify a class of linear RGRSs that permit a linear member-

ship test. Section 4.2 defines several examples of linear RGRSs recognising

non-context-free languages. Section 4.3 then introduces left-connected graph

reduction specifications (LGRSs), and identifies a class of linear LGRSs per-

mitting a linear membership test. Section 4.4 compares the expressive power

of LGRSs and RGRSs. Section 4.5 discusses the process of developing and

validating GRSs.

4.1 Recognition by rooted reduction

This section defines a class of rooted graph reduction systems which consist

of rooted rules, as described in Chapter 3. We give syntactic conditions

which ensure that the graph languages defined by such reduction systems

have a linear-time membership test. This is in sharp contrast to the situation

for general graph grammars, where even context-free languages can have an

NP-complete membership test [27].

Graph reduction systems are defined by adapting the approach of [4] to

the setting of fast graph transformation. The notion of a graph signature

was defined in Chapter 2 as a means for defining basic constraints on the

labelling and shape of graphs.

Assumption 4.1. For the rest of this section Σ = 〈L, in, out〉 is an arbitrary

but fixed graph signature.

We now define a ‘rooted’ version of the graph reduction specifications of

[4]. Recall from §3.3 that a node is described as a root if its label ̺ appears

exactly once in the graph and that A graph is described as ̺-rooted if it

contains a single ̺-labelled root.

We now define a general notion of a ̺-rooted Σ-rule. This definition

syntactically restricts rules and graphs in a similar way to Conditions R1,

R2 and R3 in §3.3. However, our objective with Conditions R1, R2 and

R3 was to define simple, easily understood restrictions ensuring fast graph

transformation. In contrast, the definition ̺-rooted Σ-rule is defined in

66

terms of the individual edge-labels restricted by the signature Σ, and so is

considerably more complex. Checking the definition is also in general more

difficult than checking Conditions R1, R2 and R3, as checking requires the

construction of an edge enumeration conforming to its restrictions.

We have define this more complex condition to provide a common frame-

work for defining other syntactic conditions. The definition of a ̺-rooted

Σ-rule is more general than the syntactic Conditions R1, R2, and R3 given

in §3.3 (proved in Lemma 4.1), and all of our examples conform to one of

the simpler conditions. The common syntactic condition also allows us to

reason generally about the expressive power of RGRSs (see §4.1.1).

Definition 4.1 (̺-rooted Σ-rule). We call a Σ-rule r = 〈L ← K → R〉

̺-rooted if (1) L and R each include a single ̺-labelled node, (2) r is left-

connected, and (3) there exists an edge enumeration e1, . . . , en of L with

the ̺-labelled node v as an initial node such that every edge ei either (A)

sL(ei) is either v or the source or target of some edge ej where j < i, and

(lL(sL(ei)),mL(ei)) ∈ dom(out), or (B) tL(ei) is either v or the source or

target of some edge ej where j < i, and (lL(tL(ei)),mL(ei)) ∈ dom(in).

Example 4.1 (̺-rooted Σ-rule). Let Σ be a signature 〈L, in, out〉 such that

L = 〈{a, ̺}, {b, p}〉, out(̺, p) = 1, out(̺, b) = 0, out(a, p) = 0 and out(a, b) =

2. We define in(,) = ⊥ for all labels.

bb

1

2

⇒
b

1

2

bb

1

2

⇒
b

1

2

The left-hand side rule given above is a ̺-rooted Σ-rule. Here the ̺-

labelled root shown as a small grey node, and the p-labelled root edge is

unlabelled. An edge enumeration for this rule must begin with the root edge,

and then include the left and right-hand side b-labelled edges in arbitrary

order.

The right-hand rule is not a ̺-rooted Σ-rule, because no valid edge enu-

meration exists conforming to Def. 4.1. This is because no enumeration

exists that has the root as an initial node where the source of the b-labelled

67

edge eb is the target of any edge earlier in the numeration than eb. Every

enumeration must include the eb, but in(b, a) = ⊥, meaning any enumera-

tion violates Def. 4.1.

The definition of a ̺-rooted Σ-rule is similar to the definition of a V-

structure avoiding rule under Dörr’s framework [26]. In §5.1 we discuss the

separating properties between this approach and ours.

Lemma 4.1. If a rule r and class of Σ-graphs CΣ conform to Condition

R1, R2 or R3, then r is a rooted Σ-rule.

Proposition 4.2 (̺-rooted Σ-rule time complexity). A ̺-rooted Σ-rule can

be applied in constant time to a ̺-rooted Σ-graph.

Proof. The definition of a ̺-rooted Σ requires the existence of an edge enu-

meration restricted by the signature. This edge enumeration has a bounded

branching factor over all Σ-graphs, because either the in-branching factor

or out-branching factor for each edge in the enumeration is bounded by the

signature. By appeal to Definition 3.4, the branching factor must therefore

be bounded by some fixed bound d. As a consequence of this and the ex-

istence of a uniquely-labelled root, we can apply Proposition 3.12 to show

that the rule can be applied in constant time.

We now define the notion of a rooted graph reduction specification. This

consists of a signature Σ, a root label used to ensure constant-time graph

rewriting, a set of reduction rules, and an accepting graph. The language

defined by it is the class of Σ-graphs that can be reduced to the accepting

graph by repeated application of the reduction rules.

Our notion of a graph reduction specification is derived from [4], where

graph reduction specifications are used for defining classes of pointer struc-

tures. Our notion of a reduction system is in one way more general, because

our notion of a signature is much less restrictive than the one used in [4].

Their notion of a signature only permits graphs with uniquely-labelled out

edges. However, their notion of a reduction system does not require that

rules are left-connected, or that they include a root label, and does not re-

quire the existence of an edge enumeration with the root-labelled node as

an initial node.

Definition 4.2 (rooted graph reduction specification). A rooted graph re-

duction specification S = 〈Σ, ̺, CN ,R,Acc〉 consists of a signature Σ =

68

〈C, in, out〉, a root label ̺ ∈ CV , a set CN ⊆ CV of nonterminal labels, a

finite set R of ̺-rooted Σ-rules and an R-irreducible ̺-rooted Σ-graph Acc,

the accepting graph. The graph language specified by S is

L(S) = {G | G is a Σ-graph and G⇒∗
R Acc and lG(VG) ∩ CN = ∅}.

We often abbreviate ‘rooted graph reduction specification’ by RGRS.

The recognition problem (or membership problem) for RGRS languages is

defined as follows:

RGRS Recognition Problem.

Given: An RGRS S = 〈Σ, ̺, CN ,R,Acc〉.

Input: A ̺-rooted Σ-graph G.

Output: Yes if G belongs to L(S), and No otherwise.

Note that in this formulation of the recognition problem the signature Σ

is fixed, and the input graph G is assumed to conform to Σ. Our later claim

of linear-time graph recognition therefore ignores the cost of checking the

conformance of G to Σ. Proposition 2.2 shows that conformance to any given

signature can be checked in time O(|G|), by simply examining each graph

node in turn. For this reason, if the complexity of membership checking is

linear or worse, it makes no difference to the order of the complexity result

whether the input graph is a Σ-graph or an unrestricted graph.

We use a signature because some restriction on the class of input graphs

is a necessary precondition for the existence of a static bound on the branch-

ing factor of an edge enumeration. As discussed in §3.2 and §3.3 the existence

of such a bounded enumeration improves rule application times. Definition

4.1 gives sufficient conditions on rules and signatures to ensure improved

application time.

We could achieve similar results without a signature by including a depth

bound as a parameter to the matching algorithm, and searching only a

bounded space of possible matches. However this approach would require a

more complex correctness proof to show that all matches exist within the

depth bound.

Several problems are also simplified by the assumption that input graphs

conform to a signature. The reduction rules that define an RGRS are gener-

ally simpler under this assumption. This is because rules can assume more

about the form of the graph. Without a signature, many more rule cases

69

Acc:
E n

Reduce:

E 1

E 2

E

n

n
⇒

E 1

E 2

n

Finish:
E 1

E

nn
⇒

E1 n

Figure 4.1: RGRS CL for rooted cyclic lists.

need to be enumerated to eliminate malformed graphs. Proofs of correctness

and linear termination for RGRSs also need to consider fewer cases under

the assumption of a signature. Without a signature, even malformed graphs

need to be considered in these proofs.

The following simple example of an RGRS specifies the language of

rooted cyclic lists. In addition to the normal nodes and edges forming a

cyclic list, language members also include a root node.

Example 4.2 (rooted cyclic list). The RGRS CL = 〈ΣCL, ̺, ∅,RCL,AccCL〉

has the signature ΣCL = 〈〈{̺,E}, {p, n}〉, inCL , outCL〉, where inCL(l, l′) =

⊥ for all l ∈ {̺,E} and l′ ∈ {p, n}.

outCL(l, l′) =







1 if l = ̺ and l′ = p, or l = E and l′ = n.

0 otherwise.

The accepting graph AccCL and the rules RCL are shown in Figure 4.1.

The unique ̺-labelled node is drawn as a small grey-filled node and the label

p of its outgoing edge is omitted.

Proposition 4.3 (CL correctness). The language L(CL) is the set of all

rooted cyclic lists.

Proof. We have to show soundness (every graph in L(CL) is a cyclic list)

and completeness (every cyclic list is in L(CL)).

70

Soundness follows from the fact that for every inverse r−1 of a rule r

in RCL, and every cyclic list G, G ⇒r−1 H implies that H is a cyclic list.

Every reduction G⇒∗ Acc via RCL gives rise to a corresponding derivation

Acc ⇒∗ G via R−1
CL. Acc is a cyclic list, and therefore by induction G must

be a cyclic list.

Completeness is shown by induction on the number of E-labelled nodes

in cyclic lists. The cyclic list with one E-labelled node is AccCL, which

belongs to L(CL). If G is a cyclic list with at least two E-labelled nodes,

then there is a unique injective morphism from the left-hand side of either

Reduce (if G has more than two E-labelled nodes) or Finish (if G has

exactly two E-labelled nodes) to G. Hence there is a step G⇒RCL
H, and

it is easily seen that the resulting graph H is a cyclic list that is smaller

than G. Hence, by induction, there is a derivation H ⇒∗
RCL

Acc and thus

G ∈ L(CL).

We now define a class of RGRSs whose languages can be recognised in

linear time.

Definition 4.3 (linear RGRS). An RGRS 〈Σ, ̺, CN ,R,Acc〉 is linearly ter-

minating if there is a natural number c such that for every derivation

G⇒R G1 ⇒R . . .⇒R Gn on ̺-rooted Σ-graphs, n ≤ c|G|. It is closed if for

every step G ⇒R H on ̺-rooted Σ-graphs, G ⇒∗
R Acc implies H ⇒∗

R Acc.

A linearly terminating and closed RGRS is a linear RGRS.

Example 4.3 (linear RGRS). The RGRS CL given in Example 4.2 is a

linear RGRS. Reduction sequences must terminate in at most |VG| steps,

because all of the reduction rules reduce the number of nodes in the graph.

Consequently the termination measure is 1. Reduction is also closed (in fact

it is deterministic), as ̺-rooted graphs must contain a unique root and the

left-hand sides of the two rules cannot match overlapping areas of any graph

in ΣCL.

The closedness of an RGRS is a semantic property of the reduction

system; that is, it cannot be checked from the simple syntactic structure

of the rules. A sufficient condition for closedness is confluence.

Definition 4.4 (confluence). An RGRS 〈Σ, ̺, CN ,R,Acc〉 is confluent if

for any ̺-rooted Σ-graph G and pair of derivations G ⇒∗
R H, G ⇒∗

R H ′,

71

there exists some graph G′ such that H ⇒∗
R G′ and H ′ ⇒∗

R G′. Confluence

implies closedness, although the converse does not hold.

Example 4.4 (confluence). The following pair of rules form a confluent

RGRS, as the left-hand sides of the rules cannot overlap.

J

a

1

2

⇒

L

c

1

2

b

�� ⇒

L

c

1

2

However, adding the following extra rule makes the GRS non-confluent.

J

a

1

2

⇒

N

d

1

2

This is because the left-hand sides of the first and third rules overlap,

meaning that any graph isomorphic to the rule’s left-hand side can be derived

into two possible graphs, neither of which are reducible.

Confluence is also a semantic property, and furthermore is known to be

undecidable, even for terminating graph rewriting systems [64]. However,

the approach of [63] gives a sufficient syntactic condition that ensures that

the rewriting system is confluent through the identification of so-called crit-

ical pairs. Critical pair analysis is sufficient to show that all of the examples

given below are are confluent.

Theorem 4.4 (linear recognition). The recognition problem is decidable in

linear time for a linear RGRS.

Proof. Let S = 〈Σ, ̺, CN ,R,Acc〉 be a linear RGRSs and G a ̺-rooted Σ-

graph. Membership of a Σ-graph G in L(S) can be tested as follows: (1)

Check that G contains no node labels from CN . (2) Apply the rules of R in

sequence (non-deterministically) until a graph is reached that is irreducible

with respect to R. (3) Check whether the resulting graph is isomorphic to

Acc.

Correctness of this testing procedure follows immediately from the fact

that S is closed. If the testing procedure reaches an irreducible graph,

closedness ensures that the resulting graph is isomorphic to Acc if and only

72

if the input graph can be reduced to Acc. Because S is linearly terminating,

the testing procedure must eventually reach an irreducible graph.

The time complexity of the problem can be broken down into the three

phases. Phase (1) requires time O(|G|) time to examine each node for non-

terminal symbols. Phase (2) of this procedure requires at most c|G| reduc-

tion steps, as S is linearly terminating. As a consequence of Proposition

4.2, each step can be performed in constant time. So the time needed for

phases (1) and (2) is O(|G|). Lemma 4.5 shows that checking the existence

of an isomorphism between a Σ-graph and a fixed Acc requires only constant

time. Therefore the whole testing procedure requires only linear time.

Lemma 4.5 (checking isomorphism to Acc). Let Acc be a fixed accepting

graph. For any Σ-graph G we can test whether an isomorphism h exists

between G and Acc in constant time.

Proof. Under the general assumptions about graph representation (given in

Assumption 3.1) the number of nodes and edges in a graph can be deter-

mined in constant time, meaning that graphs G with different numbers of

nodes and edges to Acc can be eliminated in constant time. Only graphs

of the same size need to be checked. The complexity of checking that two

graphs size S are isomorphic is O(SS) (application of the standard subgraph

isomorphism time complexity [35]). Under the RGRS recognition problem,

Acc is fixed, which means S = |Acc| is constant. The cost of checking

isomorphism with Acc is therefore also constant.

4.1.1 RGRS expressive power

Proposition 4.6 (rgrs languages have a bounded number of connected

components). Let S be an RGRS. The number of connected components in

any graph G in L(S) must be at most b, the number of connected components

in Acc.

Proof. If G is a member of L(S) there must exist a reduction sequence

G ⇒∗ Acc via R, and a corresponding inverse derivation Acc ⇒∗ G via

R−1. Each rule r in R is left-connected, so each inverse rule r−1 in R−1 has

a connected right-hand side. Each rule in r has a ̺-labelled node in its right-

hand side, so each r−1 must have a nonempty left-hand side. Given inverse

derivation H ⇒r−1 H ′, graph H ′ must therefore have no more connected

73

components than H. The accepting graph has a fixed number of connected

components, so any graph produced by an inverse derivation Acc ⇒∗
R−1 G

must have the same number or fewer. Therefore the number of components

in any graph in L(S) must be at most b, the number of connected components

in Acc.

We now use this result to prove a stronger result about languages defin-

able by RGRSs modulo the removal of the root node and incident edges.

Definition 4.5 (descendant node, descendant edge). Let G ⇒ H be a

derivation and trG⇒H the track morphism for the derivation. For any node

v in dom(trG⇒H), the node v′ = trG⇒H(v) is the descendant node of v.

Similarly for any edge e in dom(trG⇒H), the node e′ = trG⇒H(e) is the

descendant edge of e.

Example 4.5 (descendant node, descendant edge). Assume the following

simple rule r over e-labelled nodes.

1 ⇒
b

The following graphs form a derivation sequence.

e

e

b b

e

b

⇒r⇒r

The nodes identified by the dotted area form a sequence of descendant

nodes, reading from left to right. The b-labelled edges attached to these

nodes also form a sequence of descendant edges.

Lemma 4.7 (preservation of separating edges). Let R be a set of left-

connected rules and let G,H be graphs such that G ⇒R H. Let e be an

edge in EG such that e is separating and that there exists a descendant edge

e′ in EH . If e is not matched by the derivation then edge e′ is still separating

in H.

74

Proof. The result follows from the left-connectedness of the rules in R. To

make e′ non-separating, the derivation must add an extra edge between the

two connected components resulting from the removal of e. But because all

rules are connected, to match both components, a left-connected rule must

also match e.

Proposition 4.8. Let S be an RGRS and G a graph in L(S). Let G′ be

G with the ̺-labelled root node and all incident edges removed. There must

exist a bound b such that any G′ contains less than b connected components.

Proof. From Proposition 4.6 we know that there must exist a bound b′ such

that any G has less than b′ connected components. Therefore it suffices to

show that the number of separating edges attached to the root-labelled node

in G must be bounded.

Suppose the converse holds; there exists an RGRS S such that for any b,

we can pick a graph G ∈ L(S) with more than b separating edges attached

to the root. As the label-set is finite, there must exist a label l such we can

pick a graph with more than b l-labelled separating edges attached to the

root.

As there can be an unbounded number of these edges, some of them

must be removed by the reduction rules. By Lemma 4.7 these edges must

remain separating until they are matched by some rule. Removing any of

the b separating edges therefore requires a rule with one or more separating

l-labelled edge attached to the root in its left-hand side. However, by the

definition of the language the signature Σ cannot bound the number of l-

labelled edges attached to the root, so such a rule violates the condition

on edge enumerations in the definition of a rooted Σ-rule (Definition 4.1).

Therefore no such language exists, which proves the result.

This means that a RGRS cannot recognise quite simple languages such

as the language of forests, or even the language of graphs consisting just

of unconnected nodes. Other than this quite elementary restriction, we

have not been able to clarify the limits of the expressive power of rooted

graph reduction systems. For example, we do not know whether RGRSs are

of equivalently expressive to unrooted GRSs over languages of connected

graphs.

75

B

B B

L L L L

l r

l r l r

Figure 4.2: Balanced binary tree.

4.2 Non-context-free RGRS languages

To demonstrate the expressive power of linear RGRSs, in this section we

present several more complex examples of graph reduction systems. All

three of the examples presented here are non-context-free languages that

are definable by a rooted RGRS.1 It is interesting that we are able to recog-

nise such languages in linear time, as there exist context-free graph lan-

guages with an NP-complete membership problem, even among languages

of bounded node degree [51].

In §4.5 below we discuss the construction and validation of such large

graph reduction systems.

4.2.1 Balanced binary trees

The first example in this section is the non-context-free graph language of

balanced binary trees, which can be specified by a linear RGRS.

Definition 4.6 (balanced binary tree). A graph is a balanced binary tree,

BBT for short, if it consists of a binary tree built up from nodes labelled

B, U and L such that all paths from the tree root to leaves have the same

length. Nodes labelled with B have two children pointed to by edges labelled

l and r; nodes labelled with U have one child pointed to by a c-labelled edge;

nodes labelled with L have no children.

Example 4.6 (balanced binary tree). Fig. 4.2 shows a balanced binary tree

of depth 2.

1The graph languages are non-context-free in the sense of both hyperedge replacement
grammars [27] and node replacement grammars [29].

76

In addition to the normal tree nodes, rooted BBTs include a uniquely-

labelled root node (not to be confused with the tree root) with a single

outgoing edge called the root pointer that can point to any tree-node. As

in Example 4.2, we draw the root of a BBT as a small grey node, and omit

the label of its unique p-labelled outgoing edge.

The RGRS for rooted balanced binary trees is RBB = 〈ΣRBB, {B′, U ′}, ̺,

RRBB,AccRBB〉. The reduction rules and accepting graph are is shown in

Figure 4.3. The signature is ΣRBB = 〈{̺,B,B′, U, U ′, L}, {p, l, r, c}, outRBB ,

inRBB〉, where inRBB(l, l′) = 1 for all l, l′, and

outRBB(l, l′) =































1 if l = ̺ and l′ = p

1 if l ∈ {B,B′} and l′ ∈ {l, r}

1 if l ∈ {U,U ′} and l′ = c

0 otherwise.

The rules in RRBB satisfy the syntactic conditions given in §4.1 ensuring

that rules they are ΣRBB-preserving. The rules in RRBB and class of ΣRBB-

graphs conform to our syntactic Condition R1 given in §3.3, meaning by

Lemma 4.1 the rules are ΣRBB-rules. As consequence of Proposition 4.2 rule

application can be therefore be completed in constant time.

This rooted GRS RBB is a rooted modification of the un-rooted reduc-

tion system for balanced binary trees given in [4] (the unrooted version is

used later in this chapter, in §4.3, as an example for unrooted fast reduction).

Intuitively, the root in RBB behaves as a proxy for a left-hand side match

in the unrooted version. Rather than rely on the left-hand side matching

process to locate the areas for reduction, the root is explicitly moved by the

rules of the RGRS to possible application areas, and then rooted versions of

the original reduction rules are applied.

Note that this RGRS omits the size 1 graph containing a single leaf

node from its language. This is to remove the need for a special case rule,

and so reduce the number of rules. We do the same in the rooted binary

DAG and unrooted balanced binary tree examples (§4.2.3 and Example 4.11

respectively).

The rooted BBT RGRS has a larger set of reduction rules than the

unrooted version, and this increase is mostly a result of the extra cases

required to allow traversal of the graph by the root. This is because the

77

root controls the application for the rules. In the unrooted version, the

automatic process of matching takes the place of explicit root moving.

The size of the RGRS is also increased by the number of nonterminal

symbols. These are used to ensure termination when the RGRS is applied

to malformed BBTs. Nodes are marked when they are visited by the root.

Without node marking, the RGRS would not terminate when applied to (for

example) a circular list of U -nodes.

The RGRS operates by collapsing subtrees together using the R2 and

R3 rules to form a new subtree of the same height consisting entirely of

U -labelled nodes. The root is moved in a depth-first manner, down to the

lowest point at which one of these rules can be applied. The root then

alternately collapses subtrees, and searches up the tree for the next subtree

that can be collapsed. Figure 4.5 shows a sequence of reductions for a

member of L(RBB).

We now show that L(RBB) is the set of all rooted balanced binary trees,

by proving RBB sound (Proposition 4.9) and complete (Proposition 4.13).

we call a graph an NBBT (for nonterminal BBT) if it can be obtained

from a rooted BBT by relabelling any number of B-nodes into B′-nodes and

any number of U -nodes into U ′-nodes. We describe the single edge with a

̺-labelled node as its source as the root pointer.

Proposition 4.9 (RBB soundness). Let G be a ΣRBB-graph. If G is a

member of L(RBB), then G is a rooted balanced binary tree.

Proof. We will show that every ΣRBB-graph reducible byRRBB to AccRBB is

an NBBT, implying that every graph in L(RBB) is a BBT. Clearly, AccRBB

is an NBBT. By the same argument as used in Proposition 4.3, it suffices

to show that the inverses of the rules in RRBB preserve membership in the

class of NBBTs.

The inverses of the rules Up, D1 and D2 are clearly NBBT-preserving,

as they only relabel nonterminal into terminal nodes and redirect the root

pointer to some other node in the tree. The dangling condition ensures that

the inverse of rules R1-U and R1-B can only be applied at the tree root,

because the rule application deletes either a U -labelled or B-labelled node

without an ingoing tree edge. Hence the inverted rule just inserts a new U -

or U ′-labelled tree root on top of the old one, which preserves balance and

so NBBT membership. The inverses of rules R2-L and R2-R are also NBBT-

78

Acc :

U

L

c Up :

y ∈ {L,U,U ′}

U 1

y 2

c ⇒

U ′ 1

y 2

c

D1 :

y ∈ {B,B′}
z ∈ {U,U ′}

y 1

z 2 B 3

4

l r

l

⇒

y 1

z 2 B′ 3

4

l r

l

D2 :

B 1

2

l ⇒

B′ 1

2

l
R1-U :

x, y ∈ {U,U ′}

x

y

1

c

c
⇒ U

1

c

R1-B :

x ∈ {U,U ′}
y ∈ {B,B′}

x

y

1 2

c

l r

⇒ B

1 2

l r

Figure 4.3: Accepting graph and rules for the rooted GRS RBB.

79

R2-L :

x ∈ {B,B′}

x

1

L L
l r ⇒

U

1

L

c

R3-L :

x ∈ {B,B′}
y, z ∈ {U,U ′}

x

1

y z

2 3

l r

c c

⇒

U

1

B

2 3

c

l r

R2-R: as R2-L, but with labels l and r swapped
R3-R: as R3-L, but with the left-hand root pointing to the z-node

Figure 4.4: Accepting graph and rules for the rooted GRS RBB (cont).

preserving: replacing a U -node pointing to a leaf with a B-node pointing

to two leaves preserves balance. Similarly, the inverses of R3-L and R3-R

preserve balance and the other NBBT properties.

Definition 4.7 (root-pointer-predecessor). Given an NBBT in which the

root pointer does not point to the tree root, we call a node a root-pointer-

predecessor if it is on the unique path from the tree root to the parent of

the root pointer’s target.

Example 4.7 (root-pointer-predecessor). In the graph shown in Fig. 4.6,

the two B′-labelled nodes and the L-labelled target of the root edge are

root-pointer-predecessors.

We call a graph an IBBT (for invariant BBT) if it is an NBBT satisfying

the following conditions: (1) root-pointer-predecessors are not labelled U ′

and (2) all nodes labelled B′ are root-pointer-predecessors. Note the class

of terminal IBBTs is the class of BBTs.

Proposition 4.10. RGRS RBB is linear.

Proof. Closure can easily be checked for RBB by the critical pair approach

of [63].

80

B

B B

L L L L

l r

l r l r

2×D2
⇒

B′

B′ B

L L L L

l r

l r l r

R2−L
⇒

B′

U B

L L L

l r

c l r

D1
⇒

B′

U B′

L L L

l r

c l r

R2−L
⇒

B′

U U

L L

l r

c c

R3−R
⇒

U

B

L L

c

l r

D2
⇒

U

B′

L L

c

l r

R2−L
⇒

U

U

L

c

c

Up
⇒

U

U ′

L

c

c

R1−U
⇒ U

L

c

Figure 4.5: Example reduction sequence for a member of L(RBB).

81

B′

U B′

L L L

l r

c l r

Figure 4.6: BBT including three root-pointer-predecessors.

To show that RBB is linearly terminating we define a termination mea-

sure T . For every ΣRBB-graph G the termination measure T (G) = 2|G| +

|l−1
G ({B,U,L})|. We show by simple examination of the rules in RRBB that

for any derivation G⇒RRBB
H on ΣRBB-graph G, T (G) > T (H).

Rules Up, D1 and D2 preserve the size of graphs but decrease the number

of terminally labelled nodes, hence they decrease T ’s value. Rules R1-U and

R1-B increase the number of terminals by at most one, but also decrease

the graph size by two, so T decreases. Rules R2-L and R2-R decrease size

without increasing the number of terminal node labels, so they decrease T ’s

value too. Rules R3-L and R3-R decrease the graph size by two and increase

the number of terminal node labels by at most two, so they also decrease

T ’s value.

The length of any derivation G ⇒∗
RRBB

H given a ΣRBB-graph G must

therefore be less than the value of the termination measure. But T (G) is at

most 3|G| so RBB is linearly terminating.

Lemma 4.11 (non-Acc IBBTs are reducible). For every IBBT G, either

G ∼= AccRBB, or G is reducible by some rule in RRBB.

Proof. Clearly AccRBB is irreducible by RRBB. We show that every non-

AccRBB IBBT is reducible by RRBB by enumerating possible cases.

Case 1: The root pointer points to a U or U ′-node. Then we know from

ΣRBB that it must have an outgoing edge labelled c. If it has no incoming

edges, it is the treeroot and we can reduce it using either rule R1-B or R1-U

depending on the target of the c-labelled edge. If this node has an incoming

82

edge, it must be labelled c, l or r. If c, from the signature and the definition

of an IBBT we know that the source must be a U node, and so rule Up

applies. If the incoming edge is labelled l or r, its source must be a B or B′

node and it must have a sibling r or l edge. From the balance property of

an IBBT, the other edge must point to another node with an outgoing edge

– either a U , U ′, B, or B′. B′ is excluded by the definition of an IBBT. If

U or U ′, rule R3-L or R3-R applies. If a B, by ΣRBB it must have outgoing

l and r edges, and so rule D1 applies.

Case 2: The root pointer points to a B-node. Then by ΣRBB it must have

an outgoing edge labelled l, so the D2 rule applies. By the definition of an

IBBT, the root pointer cannot point to a B′-node.

Case 3: The root pointer points to an L-node. Then there must exist a single

incoming edge labelled l, r, or c. If c, by ΣRBB and definition of IBBT the

source must be labelled U and the graph can be reduced by the Up rule. If

the incoming edge is labelled l or r, its source must be labelled B and it

must have a sibling edge labelled r or l. We know by the balance property

that the target of this edge must be another L-node, so either R2-L, or R2-R

applies. This completes the proof that every IBBT apart from AccRBB can

be reduced.

Lemma 4.12 (RRBB preserves IBBTs). For every derivation G⇒RRBB
H,

if G is an IBBT then H is an IBBT.

Proof. We show that all rules preserve IBBT membership by examination of

each rule in turn. Rule Up moves the root pointer from its current position

to the node’s parent and relabels this parent from U to U ′. As the rest of

the graph is preserved, this preserves IBBT condition (1). Rules D1 and D2

move the root pointer and relabel a single B-node to B′. In both cases the

B′-node is a root-pointer-predecessor, so IBBT condition (2) is satisfied. No

U ′ nodes are added, so IBBT condition (1) is satisfied. Rules Up, D1 and D2

only relabel nodes and move the root pointer, so balance is preserved.

Rules R1-U and R1-B delete a U or U ′-node and move the root pointer

to the child of the current position. We know from the IBBT conditions that

this child cannot be labelled B′, and so the IBBT conditions are satisfied.

Rule R1-U and R1-B can only delete the treeroot, as this is the only non-

L-node that can be safely deleted under the dangling condition, and so it

preserves balance.

83

Rules R2-L and R2-R replace a B or B′-node with a U -node and move

the root pointer. Replacing a B-node and two leaves with a U -node and

one leaf preserves balance. The IBBT conditions are satisfied, as the new

target of the root pointer is a U -node and the root-pointer-predecessors are

otherwise preserved.

Rules R3-L and R3-R replace two U or U ′-nodes with a B node. The

rule preserves balance because the distance from the ‘top’ of the rule to

the ‘bottom’ is preserved. These rules replace a single B or B′-node on

the path to the treeroot with a U -node, and the root-pointer-predecessors

are otherwise unaltered. No B′-nodes are added, so both IBBT conditions

are satisfied. This completes the proof that all rules in RRBB are IBBT-

preserving.

Proposition 4.13 (RBB completeness). Let G be a ΣRBB-graph. If G is a

rooted balanced binary tree, then G is a member of L(RBB).

Proof. We show that every IBBT is reducible to AccRBB by RRBB, implying

that every BBT is in L(RBB). In Proposition 4.10 we show that every

RRBB-derivation sequence terminates, so it suffices to show in Lemma 4.11

that AccRBB is the only RRBB-irreducible IBBT and in Lemma 4.12 that

applying any rule in RRBB to an IBBT results in another IBBT.

4.2.2 Rooted grids

We now give an RGRS for the language of rooted grids, based on the grid

graph GRS given in [4].

Definition 4.8 (rooted grid). A graph is a rooted grid if it is constructed

from nodes labelled B and L, where nodes labelled B have two outgoing

edges labelled d and r (intuitively these edges are ‘down’ and ‘right’), and

nodes labelled L have no outgoing edges. A grid graph consists of a k × l

grid of B-labelled nodes – k rightward and l downward – with the downward

and rightward edges of the grid terminated by L-labelled nodes. A rooted

grid includes an extra root node that points to the single B-labelled node

without any incoming edges (the ‘upper left corner’ of the grid).

Example 4.8 (rooted grid). Fig. 4.7 shows a rooted grid of size 3× 2.

The RGRS for rooted grids is GG = 〈ΣGG, {C}, ̺,RGG,AccGG〉. The

reduction rules and accepting graph for GG are shown in Figure 4.8. The

84

LL L

L

LBB B

B B B

d

r

d

r

d

r r

d d

r
d

r

Figure 4.7: Rooted grid.

signature is ΣGG = 〈{̺,B,C,L}, {l, r, p}, outGG , inGG〉, where inGG(v, e) =

⊥ for all v, e, and

outGG(v, e) =







1 if v = ̺ and e = p, or v ∈ {B,C} and e ∈ {d, r}

0 otherwise.

GG operates by incrementally reducing the height of the grid. The Del

rule removes B-labelled nodes, while checking that each row-element can be

paired up with an element in the next row, until the whole row is deleted.

The grid structure of the graph is ensured by the fact that when each row

is removed, the rules ensure that the following row is of the same width.

Following the deletion of a row, the rules Next, Next’ and Next’’ select the

next row. Once all the rows but one have been removed, the bottom row is

deleted by the DelBot rule.

The rules and class of all ΣGG-graphs conform to Condition R2 given in

§3.3, meaning by Lemma 4.1 that the rules are ΣRBB-rules.

Proposition 4.14 (GG correctness). The language L(GG) is the set of all

rooted grids.

Proof. The same approach can be used here as used in proving Propositions

4.9 and 4.13. Completeness is proved by showing that all members of the

class of partially-reduced grids can be reduced. Soundness is proved by

showing that inverse rules preserve membership of the class of partially-

reduced grids. In both cases, the proof works by constructing possible cases

for the root node to point to, and then showing that the two properties hold

in all cases.

Proposition 4.15. RGRS GG is linear.

85

Acc : B

L

L

d

r
Init : B B 1

B2 B 3

r

d d
r

⇒ C B 1

B2 B 3

r

d d
r

Del :

B1

C

B2 B 3

B 4B
r

d d

r

r
d ⇒

B1

C

B2 B 3

B 4
r

d
r

d

Next :

1

B
2

B4

3

B L

C B L

d

r

d

r

d

r r

d

⇒

1

B
2

B4

3

B L

d

r r

d

Next’ :

1

B
2

B L

C B L

d

r

d

r

d

r r
⇒

1

B
2

LB

d

r r

Next’’ :

1

LB

B L

d

r

d

r
⇒

1

LB

d

r

DelBot :
1

L L

B B

d

r

d

r

⇒
1

L

B

d

r

Figure 4.8: Accepting graph and reduction rules for the rooted grid RGRS
GG.

86

�
l �

l
�l

Figure 4.9: Rooted binary DAG.

Proof. Closure can easily be checked for GG by the critical pair approach

of [63]. To show GG is linearly terminating, we define for all ΣGG-graphs

the termination measure T (G) = |l−1
G (B)|, where |l−1

G (B)| is the number of

B-labelled nodes in G. All rules of RGG reduce the number of B-labelled

nodes. Therefore, for any derivation G ⇒RGG
H where G is a ΣGG-graph,

T (G) decreases. As a consequence, no derivation from G can be longer than

|G|, as |G| > |l−1
G (B)| so GG is linearly terminating.

4.2.3 Rooted binary DAGs

Our final example is a linear RGRS recognising rooted binary DAGs, a class

of structures with nodes of unbounded in-degree. This is in contrast to

our previous examples, which have all defined languages of graphs with a

bounded overall degree.

Definition 4.9 (rooted binary DAG). A rooted DAG is a directed and

acyclic graph where there exists some node from which all other nodes are

reachable (we will call this node the DAG root, to distinguish it from our

̺-labelled graph root). A rooted binary DAG is a rooted DAG constructed

from nodes labelled B and L, where nodes labelled B have two outgoing

edges labelled l and r, and nodes labelled L have no children.

Example 4.9 (rooted binary DAG). Fig. 4.9 shows a rooted binary DAG.

The language of rooted binary DAGs is recognised by the RGRS RBD =

〈ΣRBD, {B′, B′′, L′, s, b, n},RRBD,AccRBD〉. The signature is ΣRBD = 〈{̺,B,

B′, B′′, L, L′}, {l, r, s, t, n}, ̺, outRBD, inRBD〉, where inRBD(v, e) = ⊥ for all

v,e and outRBD is defined as

87

outRBD(v, e) =











































1 if v = ̺ and e ∈ {s, t}

1 if v ∈ {B,B′, B′′} and e ∈ {l, r}

1 if v = L′ and e = n

1 if e = b

0 otherwise

The rules and accepting graph of the RGRS are shown in Figure 4.10.

Dashed edges stand for the edges labelled b that are used by the reduction

system to record the path taken through the graph. As in previous examples,

we draw the root of the rooted binary DAG as a small grey node and back

pointers as dashed arrows, omitting labels in both cases.

The RGRS RBD works by moving the t-labelled root-edge through the

graph in a depth-first manner, converting B-labelled nodes into L-labelled

nodes. The resulting L-labelled nodes are then deleted.

As rules in the reduction system are all rooted, any disconnected graph

elements cannot be deleted. The RGRS avoids the possibility of garbage

nodes by attaching nodes to a stack as they are encountered. This stack

is constructed by pushing an L-node onto the stack when one of its parent

B-nodes is relabelled to an L-node. The top of the stack is pointed to by

the s-labelled (‘stack’) root-edge. This s-labelled root edge is a nonterminal

edge that is added to the graph by the stack initialisation rule StartStack.

As the graph is not a tree, the t root-edge may encounter the same L-

node several times during the depth-first traversal. The reduction system

prevents the same node appearing several times on the stack by relabelling

L-nodes to the nonterminal label L′ once they are placed on the stack. Nodes

are only deleted from the stack when they have no non-stack incident edges,

as ensured by the dangling condition.

The rules in RRBD and the class of ΣRBD-graphs conform to Condition

3, and so by lemma 4.1 we can conclude that the rules of the RGRS are

Σ-rules.

We describe a graph G as an IRBD (for invariant RBD) if it is a ΣRBD-

graph satisfying the following conditions: (1) Graph G is acyclic. (2) There

exists a none-̺-labelled top node from which all non-L′-nodes are reachable,

if any exist. (3) There exists a path of l- and r-edges from the top node to the

target of the root t-edge where all nodes on the path are B′ or B′′-labelled

and have a b-labelled edge pointing to their immediate parent on the path.

88

Acc :

s t

L′

n

LR-Del :

x ∈ {B′, B′′}

0

x1

L′2

t

l r

⇒

0

L 1

L′ 2

t

L-Del : 0

B′′ 1

L′

2

L′

3

l r
t ⇒

0 L 1

L′

2

L′

3

t

Free :

s t

L′

L′ 1

n
⇒ s t

L′ 1

Stack :

L′ 2

L 1

s

t

⇒

s t

L′ 1

L′ 2

n

StackStart :

L1

t ⇒

s t

L′ 1

n

Down:

x ∈ {B,L}

0 B 1

x 2

t

l ⇒
0

B′ 1

x 2
t

l

L-Ac :

x ∈ {B,L} 0

B′ 1

L′

2

x

3

l r
t

⇒
0

B′′1

L′

2

x

3

l r
t

R-Del : as L-Del, but with labels l and r swapped
R-Ac : as L-Ac, but with labels l and r swapped

Figure 4.10: Linear RGRS recognising rooted binary DAGs.

89

(4) Nodes not on the path are not B′- or B′′-labelled. (5) Each B′′-node

must have at least one L′-labelled child. (6) Each L′-node must have either

one L′-node parent or through the s root-edge a ̺-labelled parent. (7) An

L′-node’s outgoing n-edge must either be a self-loop or point to another

L′-node. (8) If no non-L′-nodes exist, then root-edge t points to the target

of root-edge s.

Proposition 4.16. RGRS RBD is linear.

Proof. Closure can be checked by the critical pair method. The termination

function for every ΣRBD-graph G is defined as T (G) = |G| + 2|l−1
G (L)| +

2|l−1
G (B′′)| + |l−1

G (B′)|. It can easily be checked by inspecting the rules of

RRBD that for every step G ⇒∗
RRBD

H on ΣRBD-graphs, T (G) > T (H).

This result implies that the length of any derivation G⇒∗
RRBD

H on ΣRBD-

graphs can be at most |G|+2|VG|, since 2|l−1
G (L)|+2|l−1

G (B′′)|+ |l−1
G (B′)| ≤

2|VG|.

Proposition 4.17 (RBD soundness). Let G be a ΣRBD-graph. If G is a

member of L(RBD), then G is a rooted binary DAG.

Proof. We show that every ΣRBD-graph reducible to AccRBD is an IRBD.

As the set of rooted binary DAGs is exactly the set of terminal IRBDs this

is sufficient to prove soundness. As in Proposition 4.9 we show by case-

analysis that the inverses of rules in RRBD preserve membership in the class

of IRBDs.

The inverse of rules Down, L-Ac and R-Ac clearly preserve IRBDs be-

cause they only move the path from the root and relabel a node. Inverse

rules StackStart and Stack reorganise the stack in a way compatible with

IRBDs. The inverse of rule Free just increases the stack length by one. The

inverses of the deletion rules LR-Del, L-Del, R-Del convert L-nodes to B′′

or B′ nodes, preserving the path-labelling requirement.

Proposition 4.18 (RBD completeness). Let G be a ΣRBD-graph. If G is a

rooted binary DAG, then G is a member of L(RBD).

Proof. We show that every IRBD can be reduced to AccRBD. As the set of

rooted binary DAGs is exactly the set of terminal IRBDs this is sufficient to

prove completeness. As in Proposition 4.13 we show that AccRBD is the only

90

RRBD-irreducible IRBD and that applying any rule in RRBD to an IRBD

results in another IRBD.

The reducibility of any IRBD is shown by case analysis. If t points to

a B-labelled node then Down must apply. If it points to an L-labelled node

either Stack or StartStack applies. If an L′-labelled node then the node

may be the target of a B′ or B′′ node, in which case one of the Ac or Del

rules must apply. Finally, if the L′ node is not the target of any other edge,

then the node must be the top of the stack, and so the rule Free applies.

IRBD preservation is demonstrated by case analysis of possible graph

configurations matching the rule applications. Most of these cases are clear.

The difficult cases are the deletion rules LR-Del, L-Del, R-Del. In these

rules the existence of the stack of L′-nodes ensures that the graph stays

connected.

4.3 Recognition by left-connected reduction

The previous sections describes an approach to linear-time recognition which

depends on the presence of uniquely-labelled roots. In this section we de-

scribe so-called left-connected graph reduction systems that achieve linear-

time reduction without the need for roots.

Application of a left-connected graph reduction system uses the Multi-

step-Apply algorithm described in §3.4. This algorithm permits the deriva-

tion of an application of a set of rules R to a graph G ∈ C in linear time if

an edge enumeration with bounded branching factor can be constructed for

each node in the left-hand side of each rule.

The basic definitions used in defining left-connected graph reduction

systems are quite similar to those used in Section 4.1 to define RGRSs.

Definition 4.10 (fast Σ-rule). Let Σ be a graph signature. We call a Σ-rule

r = 〈L ← K → R〉 fast if for every node v in the left-hand side L there

exists an edge enumeration e1, . . . , en with initial node v such that every

edge ei either (A) sL(ei) is either v or the source or target of some edge ej

where j < i, and (lL(sL(ei)),mL(ei)) ∈ dom(out), or (B) tL(ei) is either v or

the source or target of some edge ej where j < i, and (lL(tL(ei)),mL(ei)) ∈

dom(in).

Example 4.10 (fast Σ-rule). The definition of a fat Σ-rule is quite similar

to the definition of a ̺-rooted Σ-rule – the major difference is the lack of

91

a root label. Consequently the rules given in Example 4.1 also serve as

illustration for fast Σ-rules. The left-hand rule given in this example is a

fast Σ-rule, while the right-hand rule is not, for the same reasons given in

that example.

Lemma 4.19. If a rule r and class of Σ-graphs CΣ conform to Condition

1 (given in §3.2), then r is a fast Σ-rule.

Lemma 4.20. For every node v in the left-hand side of a fast Σ-rule there

exists an edge enumeration with v as an initial node and bounded branching

factor over all Σ-graphs.

Proof. Simple generalisation of the proof given for Proposition 4.2.

Definition 4.11 (left-connected graph reduction specification). A left-conn-

ected graph reduction specification S = 〈Σ, CN ,R, c,Acc〉 consists of a sig-

nature Σ = 〈C, in, out〉, a set CN ⊆ CV of nonterminal labels, a finite

set R of fast Σ-rules, a termination factor c, and an R-irreducible Σ-

graph Acc, the accepting graph. The graph language specified by S is

L(S) = {G ∈ G(Σ) | G⇒∗
R Acc and lG(VG) ∩ CN = ∅}.

Note that the termination factor c is included as part of the definition

of an LGRS to conform to Multistep-Apply, which requires a derivation

length as one of its arguments.

We often abbreviate ‘left-connected graph reduction specifications’ by

LGRS. The recognition problem for LGRS languages is defined as follows:

LGRS Recognition Problem.

Given: An LGRS S = 〈Σ, CN ,R,Acc〉.

Input: A Σ-graph G.

Output: Does G belong to L(S)?

Definition 4.12 (linear LGRS). An LGRS 〈Σ, CN ,R, c,Acc〉 is linearly ter-

minating if for every derivation G ⇒R G1 ⇒R . . . ⇒R Gn on Σ-graphs,

n ≤ c|G|. It is closed if for every step G ⇒R H on Σ-graphs, G ⇒∗
R Acc

implies H ⇒∗
R Acc. A linearly terminating and closed LGRS is a linear

LGRS.

Theorem 4.21 (linear LGRS time complexity). The recognition problem is

decidable in linear time for a linear LGRS.

92

Proof. By Theorem 3.21, if we have a initial graph H0, set of left-connected

rules R, depth bound l, and array of edge enumerations for the left-hand

sides of R, then the algorithm Multistep-Apply defined in §3.4 will return

some graph H such that either (1) H is irreducible with respect to set of

rules R, and H is the product of a derivation of length k ≤ l, or (2) H is

the product of a derivation of length l.

Let S = 〈Σ, CN ,R, c,Acc〉 be a linear LGRS, and G a Σ-graph. By the

definition of a linear LGRS, any derivation must be shorter than c|G|. Due

to the fact that a linear LGRS is closed, any irreducible graph derivable

from G will be isomorphic to Acc if and only if G ∈ L(S).

We can therefore solve the recognition problem for linear LGRSs by

calling the algorithm Multistep-Apply, with the graph G as the initial

graph, the set of LGRS rules RS as the reduction rules, and c|G| as the

depth bound. The algorithm will return graph Acc if and only if the graph

G is in L(S), ensuring correctness of the algorithm.

By Theorem 3.22, if Multistep-Apply is called with Σ-preserving rules

and an array of enumerations such that each enumeration has a bounded

branching factor over all Σ-graphs, then the algorithm terminates in lin-

ear time. All Σ-rules preserve membership of the class of Σ-graphs. By

Lemma 4.20, the definition of a fast Σ-rule ensures the existence for each

left-hand side node of an edge enumeration with the node as its initial node,

and a bounded branching factor. Therefore, Multistep-Apply solves the

recognition problem for linear LGRSs in linear time.

The following example of an LGRS specifies the set of unrooted balanced

binary trees. This example is one of the GRSs appearing in [4] (with minor

alterations to fix an error discovered in the original version).

Example 4.11 (unrooted balanced binary tree GRS). The LGRS BB =

〈ΣBB, ∅,

RBB, 1,AccBB〉 defines the language of unrooted balanced binary trees. The

signature is ΣBB = 〈{B,U,L}, {l, r, c}, outBB , inBB〉, where inBB(v, e) = 1

for all v, e, and

outBB(v, e) =







1 if v = B and e ∈ {l, r}, or v = U and e = c

0 otherwise

The rule-set RBB and accepting graph AccBB are shown in Figure 4.11. The

accepting graph has been slightly changed from the original version where

93

Acc :

U

L

c Fell-U :

U

U

1

c

c

⇒

U

1

c

Fell-B :

U

B

1 2

c

l r
⇒

B

1 2

l r

PickLeaf :

B1

L L

l r ⇒
U1

L

c

PushBranch :

B1

2 3

U U

l r

c c

⇒

U1

2 3

B

c

l r

Figure 4.11: Rules and accepting graph for LGRS BB.

it consisted of a single L-node; The original could be restored by adding a

special case rule that reduced only the current accepting graph.

Lemma 4.22. The LGRS BB is linear.

Proof. Given in [4].

It is interesting to note that in the source paper [4] the original balanced

binary tree GRS was presented simply as an example of a GRS requiring

a linear number of reductions to terminate. It is only now, after we have

94

defining the conditions ensuring linear termination for left-connected reduc-

tion systems, that it has become clear that the membership problem for this

LGRS can be solved in linear time.

4.4 Comparison between LGRSs and RGRSs

We now compare the LGRS and RGRS approaches to reduction. Note that,

while our major results up to this point have been about linear LGRSs

and RGRSs, in this section we compare LGRSs and RGRSs in general for

expressive power. This is because we have not been able to characterise the

classes of linear LGRS and RGRS languages precisely enough to compare

their expressive powers.

Definition 4.13 (LR, LL, L
′
R). LR stands for the class of languages for

which an RGRS exists and LL for the class of languages for which an LGRS

exists. L
′
R stands for the class of languages such that for each L′ ∈ L

′
R there

exists an L ∈ LR where L′ is the language of graphs in L with root-labelled

node and attached edges removed.

Clearly the languages in LL and LR differ trivially in that members of a

language in LR must include a uniquely-labelled root node.

Proposition 4.23. There exists a language L in LL − L
′
R

Proof. As shown in Proposition 4.6, for any RGRS-recognisable language

there exists a bound b such that no graph in the language contains more

than b connected components. By Proposition 4.8, this result holds even

if the single root-labelled node and attached edges are removed. LGRS

languages in contrast can contain of an arbitrarily large number of con-

nected components. For example, the language of single nodes (that is, an

unbounded number of nodes with no incoming or outgoing edges) can be

recognised by an LGRS with a single reduction rule and an empty graph as

the accepting graph.

The distinction between the two kinds of GRSs is a result of two major

differences between LGRSs and RGRSs: (1) LGRS rules do not have to be

applied at the location of a uniquely-labelled root node, and (2) LGRS rules

do not have a root node that must be preserved. As a result, even though

95

the accepting graph and the left-hand sides of rules must be connected in

an LGRS, connected components can be deleted by reduction.

The converse result also holds: there exist languages recognisable by

some rooted GRS that cannot be recognised by any left-connected GRS.

This is true because in an RGRS only the root needs to be the initial node

of an enumeration satisfying the signature condition. In an LGRS each left-

hand side node must be the source of such an enumeration. Intuitively, the

existence of a root in the rules of an RGRS restricts the order of search, and

so prevents some searches that require an unbounded amount of time.

Proposition 4.24. There exists a language L in LR − LL.

Proof. Our counter-example is the language of rooted binary DAGs, orig-

inally defined in §4.2.3. As shown in that section, this language can be

expressed using a linear rooted GRS. It therefore suffices to show that no

LGRS exists recognising the language of RBDs.

Let us assume the converse; we have an LGRS RBDL recognising the

language of rooted binary DAGs, as defined in §4.2.3. We call an l-labelled

edge that points to an L-labelled node with in-degree one an l-singleton. An

l-singleton is separating for the singleton’s source and target in an RBD. As

an L-labelled node in an RBD can have an unbounded number of incoming

l-labelled edges, in the signature ΣRBDL
it must hold that in(L, l) = ⊥.

As a consequence of Lemma 4.7, an l-singleton can only be removed

or modified by a rule that contains an l-singleton. We can pick a RBD

with an unboundedly large number of l-singletons, meaning some must be

removed to reach the fixed-size accepting graph. Consequently RBDL must

include a reduction rule that includes an l-singleton on its left-hand side.

Any enumeration over this rule with the L-labelled node as an initial node

must include the l-singleton edge. However, as in(L, l) = ⊥ in the signature,

this violates the condition on edge enumerations in the definition of a fast

Σ-rule (Definition 4.10). Consequently, no such LGRS RBDL exists, which

proves our result.

4.5 Developing and validating GRSs

In this chapter we have given several RGRSs and LGRSs, some of which

are quite complex. In this section we sketch the process we have used for

designing and validating new GRSs.

96

In most cases, the GRSs presented in this thesis were developed from

other preexisting GRSs. The only GRS designed entirely from scratch was

the most complex, the rooted binary DAG RGRS given in §4.2.3.

Designing a GRS entirely from scratch was essentially the process of de-

signing an algorithm for reduction. We first sketched a number of potential

strategies for reduction. We then tried to implement the strategies as GRSs.

Inevitably some of the approaches turned out to be unworkable, or very dif-

ficult to understand, or to require a very large GRSs. The most successful

strategy was debugged and developed further.

Our major design objectives for a GRS were as follows, roughly in order

of importance from most to least.

• Minimise the complexity of the reduction approach.

• Minimise the number of reduction rules.

• Minimise the number of reduction steps to termination.

The construction of a nonterminal class of intermediate graphs goes hand

in hand with the development of a GRS. A set of reduction rules define a

nonterminal class, so the nonterminal class can be seen as capturing the

approach to reduction in the RGRS. In several the of the GRSs presented

in this thesis, we designed the class of nonterminal graphs before defining

the appropriate rules to reduce the class.

For many LGRSs, a corresponding RGRS can be constructed by aug-

menting the reduction rules with a root node, and adding extra ‘search’ rules

to move the root to application areas. The RGRSs GG and RBB from §4.2,

and CL from Example 4.2 are rooted versions of unrooted GRSs appearing

in [4]. In all of these case adding roots resulted in a much larger number of

reduction rules.

The major general design difference between the two kinds of GRS is

the level of operational control of the reduction process given by the rules.

RGRSs are rooted, and the root is the only valid application area. Conse-

quently RGRSs have to explicitly move the root between application areas.

This means that the reduction system gives quite a specific ordering on the

sequence of reductions applied to the graph. In contrast, in LGRSs the

matching algorithm finds an application area automatically, and this often

means that the choice of application area is much more non-deterministic.

97

The strategy for moving the root can be quite complex (see for example

RBD, §4.2.3), as the direction of search can be controlled to a fine degree

using labels. The main challenge with adding explicit movement of the root

is ensuring termination. Just adding arbitrary root-moving operations will

often result in non-termination in ill-formed graphs with cycles. In RBB and

several other examples termination is achieved by marking visited nodes.

We found it difficult in general to judge informally whether a GRS was

correct, as correctness often depended on subtle rule interactions. We have

made use of a general methodology for validating RGRS and LGRS against

a given graph language. This consists of defining the class of nonterminal

intermediate graphs and then showing correctness and linearity as follows:

• Show soundness by showing that the class is closed under the inverses

of the reduction rules.

• Show completeness by showing that every member of the nonterminal

class can be reduced by some reduction rule.

• Show linear termination by showing that some termination measure

exists that is reduced by every reduction rule.

Termination generally was simple to check, as our termination measures

depend on simple structural properties of the rules. Validation of soundness

involves considering all possible cases for a rule match to show that the

nonterminal class is closed under the rule. Similarly completeness involves

breaking down the nonterminal class by case to check that every member

can be reduced.

In the case of soundness and correctness checking rules is quite tedious,

as a large number of cases have to be checked. This suggests that it may be

possible to automate this step of the validation process.

98

Chapter 5

Other approaches to

fast graph transformation

In this chapter we compare our work on fast graph transformation and

reduction systems to other related approaches. The approach to fast graph

transformation we present in Chapter 3 and Chapter 4 improves the worst-

case application time of rules or systems of rules. For this reason, we focus

on approaches that improve the worst-case application time, and mention

heuristic-based approaches only when they relate closely to our work.

The chapter is structured as follows. §5.1 discusses the approaches that

have been developed for improving the time complexity of single deriva-

tions. Section 5.2 discusses the approaches developed for efficient multi-step

derivations. In Section 5.3 we describe other approaches to the problem of

efficient graph language recognition, and specifically discuss the relationship

of our fast recognition systems to the special reduction systems of [11, 1].

5.1 Efficient direct derivations

Many graph rewriting systems are based on local search algorithms. These

begin matching from a single node and then extend the matching morphism

to neighbouring nodes and edges. For example, the matching algorithms

of GrGen [36, 59] and GP [57] work in this way. Both of these approaches

use heuristics to select appropriate start nodes. In the case that the heuris-

tics make a good selection of start node and search order, these approaches

achieve the time-bounds given for left-connected and rooted graph transfor-

99

mation.

However, these approaches do not ensure linear-time or constant-time

application. The major result of our work on fast graph transformation,

given in Chapter 3, has been to take the local search approach and define

the restrictions on graphs and rules necessary to ensure linear and constant

worst-case time bounds.

The heuristic approaches often attempts to identify uniquely-labelled

nodes to use as start nodes. For example, GrGen [36, 59] attempts to ap-

proximate the frequency of node labels, and use less frequent labels as start

nodes. In this way, these approaches make use of root nodes.

Other works have considered using explicitly-identified root nodes to

enable fast rule application. For example, [33, 34] consider classes of host-

graphs representing infinite trees constructed by ‘unrolling’ from some root.

This approach permits linear-time matching with rules as inputs. However,

host graphs are severely restricted by the requirement that they are tree-

structures.

The approach closest to ours is the work of Dörr [25, 26]. This is a

rooted approach based on constructing edge enumerations that avoid so-

called strong V-structures.

Definition 5.1 (strong V-structure). A strong V-structure is defined as by

a triple of graph labels 〈la, le, lv〉. A strong V-structure corresponding to

〈la, le, lv〉 is two edges e1, e2 and three nodes v0, v1, v2 where (1) e1 and e2

have label le, (2) v1 and v2 have label lv, (3) v0 has label la, and (4) either

v0 is the source of e1, e2 and v1, v2 are their targets, or the reverse.

Example 5.1 (strong V-structure). A strong V-structure corresponding to

〈la, le, lv〉 consists of a subgraph isomorphic one of the following two cases.

la

lv lv

le le

la

lv lv

le le

Suppose we have a set T of label triples such that all V-structures in

the host graph correspond to members of T . Then an edge enumeration is

bypassing with respect to T if the source label, target label, and edge label

of an edge in the enumeration matches no triple in T .

100

Dörr’s application algorithm is a simple enumeration-based matching

algorithm, very similar to the algorithm Fast-Match given in §3.3. If

the input enumeration bypasses all strong V-structures then the application

algorithm terminates in linear time.

Our notion of an enumeration with a bounded branching factor can be

seen as a generalisation of Dörr’s notion of bypassing enumeration. A by-

passing enumeration has a branching factor of 1 under our approach. Dörr

also requires unique root nodes. For this reason, rules with a bypassing

enumerations can be applied in constant time using the rooted application

algorithm given in §3.3.

Our notion of branching is more general because rules under the V-

structure approach are deterministic, while ours may be non-deterministic.

Furthermore, all host-graphs under Dörr’s approach are assumed to belong

to a graph grammar which can be analysed for possible V-structures. We

don’t require any generation mechanism for host graphs, and instead have

developed simple syntactic conditions that ensure the existence of an edge-

enumeration bound.

We have extended the bounded enumeration approach in ways that Dörr

does not consider. Dörr’s requirement for constant time application means

that he considers only rooted systems, while we have extended the notion of

enumerations with a bounded branching factor to unrooted left-connected

systems. By modifying the algorithm of [11], we have also shown that se-

quences of such unrooted rules can be applied in linear time, even if indi-

vidual rule applications also require at worst linear time.

Finally, Dörr differs from our work in the uses he makes of his rules with

improved application times. He applies rooted rules to general computation

systems based on graph transformation (his example in [26] is the imple-

mentation of a functional programming language), while we have applied

our work on fast graph transformation to the recognition problem for graph

transformation systems.

5.2 Efficient multi-step derivation

Our algorithm Multistep-Apply, which solves the multi-step graph trans-

formation problem for unrooted rules, is derived from the multi-step algo-

101

rithm given by Bodlaender and de Fluiter in [11].1

Bodlaender and de Fluiter’s version of the algorithm maintains a list of

search locations in the same way that ours does. However, it ensures that

each individual search terminates in bounded time by bounded adjacency

search. The graph is represented by an adjacency list representation, and the

algorithm searches only within a bounded distance from previously-matched

edges to find more matching edges. This means that the correctness of the

algorithm depends on the assumption that a bounded search is guaranteed

to find a match.

This assumption is discharged by applying the algorithm only to so-

called special reduction systems. However, their definition of such reduction

systems is semantic. It cannot be checked by examining the syntactic struc-

ture of the rewrite rules. This is the main difference between our version

of the algorithm and the version of [11]. We have defined simple sufficient

syntactic conditions ensuring that our algorithm terminates in linear time.

Bodlaender and de Fluiter’s algorithm is in turn based on the algorithm

given in [1]. This version of the algorithm searches only from interface-

graph nodes. The conditions on rules which ensure linear-time termination

are syntactic, but they require the absence of edges between interface-graph

nodes – a severe restriction. In contrast, our algorithm requires only the

existence of sufficient edge enumerations with bounded branching factor,

as ensured by our syntactic conditions. Our conditions on labels and node

degree also seem more natural than prohibiting all edges between interface

nodes.

Our algorithm Multistep-Apply shares information between rewriting

steps. As such, it is similar to the approach of [77]. Under this approach, all

potential matchings between a rule and the current graph are recorded in

a database. After rewriting, the matches in the database must be updated

with the new structure of the graph.

Our algorithm is also similar to the RETE algorithm [30], an algorithm

for matching patterns to objects which can be used for graph matching. As

with [77], RETE maintains a structure during a derivation represents all

partial matches.

Like our algorithm, both of these approaches use an intermediate struc-

1This algorithm and the algorithm of [1] are used in approaches to graph recognition.
In the next section we compare these approach to our work on recognition systems.

102

ture to amortise the cost of matching over a derivation. The intermediate

data-structures recorded by these two approaches are quite complex, mean-

ing that the cost of maintaining the structures may be very high. In contrast,

our algorithm maintains only a list of potential locations, and updating is

therefore guaranteed to be much cheaper.

Unlike our algorithm, these approaches apply to unrestricted graph trans-

formation systems, meaning that they only aim to improve the average per-

formance of graph matching. The results given in [77] are experimental; in

contrast, we ensure an improved worst-case time complexity.

5.3 Efficient recognition and

special reduction systems

This section compares our fast left-connected and rooted graph reduction

systems to other approaches that have been developed for efficient recogni-

tion by reduction. Our main comparison is with the approach to language

recognition described by Bodlaender et al. in [11] and Arnborg et al in [1].

This work is based on Courcelle’s earlier work on monadic second-order logic

[17], and the prior work on the treewidth of graphs [10].

The formulations in [11, 1] are slightly different, but both give the fol-

lowing: (1) An algorithm that solves the language recognition problem. (2)

A class of so-called special reduction systems which ensure that the recogni-

tion algorithm terminates in linear time. (3) A condition on graph languages

ensuring the existence of a corresponding special reduction system.

Suppose we have a language of graphs that can be defined as the in-

tersection of (1) the set of graphs of treewidth up to some bound, and (2)

a language that can be defined by some formula in monadic second-order

logic. Then [11] and [1] show that a special reduction system can be auto-

matically constructed, and consequently that membership of these languages

is decidable in linear time.

Our approach can recognise in linear time languages which violate both

of these sufficient conditions. The language of balanced binary trees is de-

fined under the RGRS approach in §4.2.1 and LGRS approach in §4.3, but

we show in Appendix A that this language is not expressible in monadic

second-order logic2. The language of grid-graphs is defined using the RGRS

2It is not clear in [1] whether their sufficient condition requires monadic second-order

103

approach in §4.2.2 and can be expressed in a similar way using an LGRS,

but it has an unbounded treewidth. This is because an n×n grid graph has

treewidth n [18, p324].

The formulations of a special reduction system given in these two papers

are slightly different. Our aim in our work has been to construct syntactic

conditions on rules and graphs ensuring improved termination times. For

this reason, we focus on the syntactic SRS formulation of [1], rather than

the semantic formulation of [11].

On the one hand, special reduction systems as given in both [11] and [1]

are of incomparable power to both LGRSs and RGRSs. This is because the

notion of a reduction system given in these papers lacks non-terminal labels,

which places quite a severe restriction on their expressive power. To prove

this, we give an example of a language inexpressible without non-terminals.

Definition 5.2 (complete binary tree). We describe a graph as a complete

binary tree (CBT) if it is a balanced binary tree where all of the branch

nodes are binary.

The language of all complete binary trees can expressed by both LGRSs

and RGRSs. The rooted BBT example given in §4.2 and the unrooted BBT

example given in §4.3 can both be adapted to recognise CBTs by simply

turning the terminal U -label into a non-terminal label.

However, the language of complete binary trees cannot be expressed

in a special reduction system, or indeed any reduction system under the

formulation in [11] and [1]. We prove this result by a simple size argument.

This proof is a restatement of the proof of Theorem 5 in [4].

Proposition 5.1. No reduction system as defined in [1] exists which can

recognise the language of complete binary trees.

Proof. By the definition of a reduction system in [1], a reduction system R

for property P must be ‘safe’, meaning whenever G
R
−→ G′, then P (G) ⇔

P (G′). Assume we have Rc, a reduction system for CBTs. Let s be the

maximum of the sizes of the left-hand sides of rules in Rc. Let G be a CBT

of depth k chosen such that 2(k−1) > s. Each reduction by any rule in Rc

can remove at most s nodes from the graph G. However, every CBT smaller

logic with or without an incidence predicate. In Appendix A we prove that balanced
binary trees are inexpressible in both versions of MSOL.

104

Acc: H Reduce:

R

H 1

s ⇒ H 1

H

R

s R

s
Rs

R
s

R

sR

s

n

Figure 5.1: A special reduction system which recognises the language of
star, and an example star.

than G is at least 2(k−1) nodes smaller; every larger CBT is at least 2k nodes

larger. Therefore Rc does not exist.

On the other hand, the special reduction systems of [1] can also express

languages which are inexpressible under both linear and rooted GRSs. We

call a graph a star if it consists of a single H-labelled ‘hub’ node, and an

unbounded number of R-labelled ‘rim’ nodes, and for each rim node there

exists a single s-labelled ‘spoke’ edge with the rim node as its source and

the unique hub node as its target.

A special reduction system exists which recognises the language of star.

An example of a star, and the corresponding special reduction system is

shown in Figure 5.1. For clarity we use our normal notation for a rule rather

than the notation used in [1], but the two notations are equally expressive.

This language of stars is not in L
′
R. This means that it cannot be recog-

nised by an RGRS, no matter where the uniquely-labelled graph root is

added to the graph. To prove this result we need the following lemmas.

Lemma 5.2 (moving the root). Let G be a rooted graph with a separating

edge l in the same component as the root. Let v be the node attached to l that

is in the same component as the root in G \ l. Let G⇒r H be a derivation

such that l is not matched, and let l′ be the descendant of l in H. Then l′ is

separating in H, and the descendant of v is in the same component as the

105

root in H \ l′.

Lemma 5.3 (roots and separating edges). Let r = 〈L ← K → R〉 be a

rooted rule with matching enumeration e1, . . . , en. Let G be a rooted graph,

and let G ⇒r H be a direct derivation where edge e matched by l ∈ EL is

separating in G. Let vu be the node attached to l not in the same component

as the root in G \ l. Let l be the ith element of the edge enumeration. Then

there can be no lj in the enumeration such that j < i and lj is incident to

vu.

Proposition 5.4. No RGRS exists which recognises the language of stars,

even with the addition of an arbitrarily-located root node.

Proof. Suppose we have an RGRS which recognises the language of stars

with an arbitrarily-attached ̺-labelled root node. All rules in the RGRS

must satisfy the conditions on rooted Σ-rules given in Def. 4.1.

Now we can pick an arbitrarily-large star H with the root attached to

some node. To reach the finite-size accepting graph from graph H, we must

therefore be able to delete some of the rim nodes and spoke edges. To delete

or modify an edge it must be matched to the left-hand side of some rule

during the reduction. However, any such rule is not a rooted Σ-rule. There

are two cases.

Case 1: The root is attached to the hub node. All the spoke edges are

separating for the hub node and the corresponding rim node. By Lemma

5.2 and Lemma 5.3, to match any of the spoke edges, the spoke edge must

be matched in some left-hand side by an edge enumeration which matches

from the hub towards the rim. Because the number of edges outgoing from

the hub is unbounded, such an edge enumeration must violate the condition

on rooted Σ-rules.

Case 2: The root is attached to a rim node. By Lemma 5.2 and Lemma

5.3, to match and remove more than one spoke edge must again require an

edge enumeration which extends from the hub to the rim. Once again, this

violates definition 4.1. Therefore no such RGRS exists.

The proof that no LGRS exists for star graphs is easier, because any rule

can be applied non-deterministically anywhere in the graph, rather than just

at the root.

106

Proposition 5.5. No LGRS exists which recognises the language of stars.

Proof. Suppose we have an LGRS which recognises the language of stars.

Then all rules in the LGRS must conform to Def. 4.10 for fast Σ-rules. Let

us pick a star G which is larger than the accepting graph, with hub degree

d > b. To recognise the accepting graph we must therefore remove some

of the spoke edges in the graph. By Lemma 4.7 to remove any spoke edge

there must exist a rule which includes a separating s-labelled spoke edge.

But, by the same argument as used in Proposition 4.24 to argue that the

language of RBDs is not LGRS-expressible, any such rule must violate Def.

4.10. Therefore no such LGRS exists.

The restriction on special reduction systems imposed by the absence of

non-terminal symbols can be lifted by modifying the definition of an SRS

to permit the use of non-terminals. We denote by LS the class of graph

languages definable by special reduction systems extended with non-terminal

symbols.

Conjecture. We believe that neither of the classes LL and LR are subsets

of the class LS of languages definable by special reduction systems extended

with non-terminal symbols. This conjecture seems plausible because special

reduction systems prohibit edges between interface nodes, which severely

restricts the structure of rewrite rules. Intuitively, it seems that this must

restrict the formal power of the system. However, at present we have not

been able to prove this.

107

Part III

Graph grammars and

separation logic

108

Chapter 6

Semantics of formulas

and grammars

Hyperedge-replacement grammars, which are defined formally in §2.3, are

a natural extension of context-free string grammars to the world of hyper-

graphs. Hyperedge replacement productions are context-free, meaning that

they only replace a single non-terminal hyperedge, rather than a subgraph

of the target graph. The language defined by such a grammar is the class

of graphs derivable from some initial graph.

Separation logic is a recently-developed logic for specifying the properties

of heaps. It makes use of a separating conjunction to enable local reasoning.

Loosely speaking, this separating conjunction allows a logical formula to

specify the spatial relationships between assertions in the heap. Formulas

can specify properties that are true in disjoint portions of the heap.

A separation-logic formula is normally seen as defining a class of satisfy-

ing states, each of which consists of a heap, recording the relation between

memory locations, and a stack, recording program variables. States are

graph-like structures, with heap locations as ‘nodes’ and pointers as ‘edges’.

So both hyperedge replacement grammars and separation logic formulas de-

fine classes of graph-like structures.

Separation logic formulas are frequently used with recursively-defined

predicates. These formulas with recursive predicates resemble hyperedge

replacement grammars quite closely, in that a predicate stands for a class

of satisfying heaps attached to the larger separation-logic state through its

arguments. Furthermore, the separating property enforced by the separating

109

conjunction resembles the context-free property of hyperedge-replacement

grammars, in that separated predicate calls can only share a fixed number

of locations. That is to say, predicate calls can’t ‘overlap’.

In this part of the thesis, we show that this intuition is correct: restricted

hyperedge replacement grammars and formulas in a restricted fragment of

separation logic are indeed related. We do this by defining mappings in

both directions between these restricted grammars and formulas in the frag-

ment. We show that the two mappings g and s are correct in the sense that

they are semantics-preserving with respect to a bijective mapping α between

separation-logic states and graphs. The preservation of semantics that we

are looking for in the mappings can be expressed by the requirement that

the following pair of diagrams commute:

Grammar Graphs

Formula States

language

satisfied by

g α=

Grammar Graphs

Formula States

language

satisfied by

s α−1=

Intuitively, if this correctness property holds, then any class of structures

that can be expressed in one domain can also be expressed in the other. This

means that our fragment of separation logic is of equivalent expressive power

to our restricted form of hyperedge-replacement.

This result has the interesting consequence that some of the theoretical

results for hyperedge replacement languages, such as the inexpressibility

results, can be imported wholesale into our fragment of separation logic.

For example, the languages of red-black trees, balanced binary trees and

grid graphs are all known to be inexpressible by any hyperedge-replacement

grammar. Therefore no formula exists in our fragment specifying any of

these structures.

The chapter is structured as follows. In Section 6.1 we define the frag-

ment of separation logic we use and formally define its semantics. In Section

6.2 we show that all formulas in this fragment can be flattened into a sim-

pler form without nested recursive definitions. In Section 6.3 we define a

class of heap-graphs that correspond to separation-logic heaps, and define a

mapping between heap-graphs and heaps. Finally, in Section 6.4 we define

a class of graphs corresponding to heaps, and show that any grammar can

be normalised to one producing only heap-graphs.

110

6.1 Separation logic syntax and semantics

Separation logic [46, 69] extends first-order logic with so-called spatial as-

sertions that describe the state of the heap. Spatial assertions in separation

logic are local, meaning that they describe properties that hold in disjoint

areas of the heap, and that they restrict the sharing between regions of the

heap. Spatial assertions permit local reasoning, meaning that assertions can

be safely combined without explicit restrictions on sharing.

This section specifies the syntax and semantics of a fragment of sepa-

ration logic. The semantics for separation logic given in this section are

based on those appearing in [74, 52], with modifications that we describe.

The definition of satisfaction given in Figure 6.2 is based on [74], while the

semantics of the recursive let is based on [52].

6.1.1 Separation logic model

Separation logic formulas primarily express properties of heaps. We use a

cons-model for the heap, where each location in the heap points to a pair of

elements. We have chosen this model because it is simple enough to easily

define our translation, but rich enough to define interesting structures such

as trees and lists.

Other models can be used as the domain for separation logic. In §8.2 we

consider an extended heap-model based on tuples. More complex models are

also available, such as the RAM model, which records locations as integers

and so permits pointer arithmetic [69].

The RAM model is too complex to map to hyperedge replacement in

a semantics-preserving manner, because the relationship between adjacent

cells is impossible to capture using edges. In order to model it would need

to be able to create edges between arbitrary members of the heap, to model

locations that were accidentally adjacent. Doing this would require that we

maintain nonterminal edges between all heap locations, which would break

the locality of hyperedge replacement.

Other heap models such as the one used in [74] allows integer values in

the heap, but prohibits pointer arithmetic; Here we abstract away to deal

only with the structure of the heap. In this, the model we use is similar to

the model used for symbolic heaps that form the basis of recent separation-

logic-based program analysis [6, 20]. In §8.3.2 we look at the relationship

111

between our fragment of separation logic and the symbolic heaps fragment.

Assumption 6.1. Let Loc be a countably infinite set of locations. The set

of elements, Elem = Loc ∪ {nil}, consists of locations and a special atomic

value nil. We also assume an atomic unknown value �.

Definition 6.1 (heap). A heap h : Loc ⇀ (Elem × Elem) ∪ � is a finite

partial function mapping heap locations to pairs of elements or �. We use

HE to stand for the set of all possible heaps.

The image of a heap h, written img(h), is the set of locations held in pairs

in the heap, that is img(h) = {v ∈ Loc | ∃v′. h(v′) = (v,) ∨ h(v′) = (, v)}.

We describe a location l in a heap h as dangling if l ∈ img(h) and l /∈ dom(h).

Note that in general img(h) \ dom(h) may be nonempty, meaning ele-

ments in h may refer to locations outside the heap.

The inclusion of the unknown value � is a departure from the standard

model given in [69]. In the semantics of formulas, we want to avoid locations

that are in the image of a heap but not in the heap domain. Locations that

could dangle in this way are avoided by mapping representative locations to

the value �. See p. 117 for more on this.

Example 6.1 (heap). The heap h shown below associates three locations,

l1, l2 and l3 with pairs of values. Other locations are undefined.

h = { l1 7→ 〈l2, nil〉,

l2 7→ 〈nil, l3〉,

l3 7→ 〈l2, l1〉 }

l1 :

nil

l2 :
nil

l3 :

We represent this heap by the diagram shown on the right-hand side.

Undefined locations are not shown.

We consider heaps as distinct only up to isomorphism. In practice, this

means that the underlying set of locations can be substituted for each other

without changing the meaning of the heap. This relies on the implicit as-

sumption that only the structure of the heap is important, as encoded by

the relation between heap locations. This is sensible when we are interested

in reasoning about the abstract properties of separation logic. It may break

112

down however if we are dealing with more concrete heaps with distinguish-

able locations.

6.1.2 Separation logic fragment

Our mapping between separation-logic formulas and hyperedge replacement

grammars operates over a fragment of the full separation logic as given in

[69]1. This includes separating conjunction (∗), the recursive let (let Γ in

P), ‘points-to’ (7→), disjunction, existential quantification, elements from the

set Elem, predicate names σ from a set Pred, and variable names x, x1, . , xn

from a set Var.

The class SL of all separation-logic formulas in this fragment is defined

by the following abstract syntax, with initial symbol F . Given a set of

variables K we write FK for a formula that contains only free variables in

K – see the discussion on p. 121.

F ::= emp | x 7→ V, V | F ∗ F | ∃x. F | F ∨ F |

σ(V, . . . , V) | let Γ in F

Γ ::= σ(x1, . . . , xn) = Fx1,...,xn | Γ,Γ

V ::= x | nil

The precedence order for nested operators, given from strongest to weak-

est, is: ∗, ∨, ∃, let Γ in F .

The simplest assertion is emp, which asserts that the heap is empty. A

heap is empty if the heap’s address function is undefined for all addresses.

Next, the points-to assertion, written a 7→ e1, e2, asserts that the heap-

function defines the single address a as pointing to the tuple (e1, e2).

Separation logic’s most important extension to first-order logic is the

separating conjunction, written ‘∗’. A heap h satisfies P0 ∗ P1 if there exist

disjoint subheaps satisfying P0 and P1, such that h is the composition of the

two subheaps.

Separation logic extends first-order logic with several constructs permit-

ting reasoning about heaps. The most basic of these is the points-to assertion

1 We generally describe our logic as a fragment of full separation logic. However it is
not a true fragment, as our recursive let is more general than the notion of recursion in
most formulations separation logics. The exception to this are the separation logics given
in [52, 74], both of which include a general operator for recursion.

113

h1 :

i

i′′ i′′
i′

h2 i i′′
i′

Figure 6.1: Heap h1 satisfies the formula ∃xyz. ((x 7→ z, y)∗(y 7→ z, x)) with
x instantiated with i, y with i′ and z with i′′. Heap h2 does not satisfy the
formula, due to sharing.

a 7→ e1, e2, which asserts that the heap has a singleton domain {a} and that

it maps a to (e1, e2).

Separation logic also introduces the separating conjunction P0∗P1, which

asserts that P0 and P1 hold in disjoint sections of the heap. This prohibits

sharing. For example, the formula ∃xyz. ((x 7→ z, y) ∗ (y 7→ z, x)) asserts

that the heap associates location x with the pair (z, y), and location y with

the pair (z, x), and that x and y are distinct. This is satisfied by heap h1 in

Figure 6.1, but not by heap h2 due to sharing.

Most of the constructs in this fragment are either conventional first-

order logical operators, or are conventional separation-logic operators as

introduced in [69]. The only unusual construct is the let-construct, which is

used to define recursive predicates.

A let-expression let Γ in F takes as its arguments a list of predicate defi-

nitions Γ and a separation logic formula F , over which the definitions scope.

Predicates definitions have the form σ(x1, . . . , xn) = R. Here σ is a pred-

icate name, x1, . . . , xn are variable arguments, and R is the predicate body.

Intuitively, a formula let σ(x1, . . . , xn) = R in F states that any (recursive)

invocation of the predicate σ in F is satisfied by every heap satisfying R.

Predicates defined in Γ scope over the definitions of Γ, so let-statements can

define mutually-recursive predicates. We call a formula let-free if it does not

contain a let-expression.

Example 6.2 (binary tree formula). The separation-logic formula for the

class of binary trees is given below. It is satisfied by any heap contain-

ing a binary tree with nil leaves. The predicate bt(x) defines the class of

heaps containing a binary tree with nil-valued leaves and root at x. We

abstract away from a particular root node by existentially quantifying x.

∃x.let bt(x1) = (x1 7→ nil, nil) ∨

(∃x2, x3. (x1 7→ x2, x3) ∗ bt(x2) ∗ bt(x3))

in bt(x)

114

In this predicate each node of the tree holds a pair of values. The leaves

of the tree consist of pairs of nil-values. bt(x) is satisfied if either x points

to a location holding a pair of nil-values, or if x points to a pair of locations,

both of which also satisfy bt. The separating conjunction ∗ between the

branch and the two subtrees differs from conventional conjunction in that it

prevents its conjuncts from overlapping in the heap. This enforces the tree

property by preventing sharing between the subtrees.

Our fragment of separation-logic has been selected to remove features

that are inexpressible in hyperedge-replacement grammars. Notably the

conjunction, negation and separating implication (−∗) operators are omitted.

Conjunction and negation are omitted because the class of HR-expressible

languages is not closed under either language intersection or negation [39].

Negation is also omitted in order to ensure the existence of a least fixed-

point in our semantics for let-statements. Separating implication is omitted

because a formula with separating implication can be used to ‘match’ and

‘remove’ a portion of the heap; operations that are fundamentally context

sensitive, and so outside the domain of hyperedge replacement grammars.

Section 8.1 discusses in more detail our reasons for omitting these con-

structs, and proves that some of the omitted constructs are inexpressible

under hyperedge-replacement.

6.1.3 Fragment semantics

To define the semantics of a formula in our fragment, we define the satisfac-

tion relation ‘|=’. Satisfaction is defined for a heap h, a variable interpreta-

tion i and a predicate interpretation η.

Assumption 6.2. In the following, let Var be a countably infinite set of

logical variable names and let Pred be a countably infinite set of predicate

names.

Definition 6.2 (variable interpretation). A variable interpretation defines

the meaning of variables in a separation logic state. A variable interpretation

i : Var → Elem is a partial function mapping variables to heap elements.

A variable interpretation i defines an interpretation function [[−]]i : Var ∪

{nil} → Elem, where [[nil]]i = nil and [[v]]i = i(v) for all v ∈ Var.

115

Example 6.3 (variable interpretation). Given variables x, y and z and

locations l1 and l2, we can define the following variable interpretation.

i = {x 7→ l1, y 7→ nil, z 7→ l2}

Definition 6.3 (predicate interpretation). A predicate interpretation de-

fines the semantics of a recursively defined predicates as a class of satisfy-

ing heaps with attachment points. A predicate interpretation η : Pred ⇀

Pow(Loc∗ ×H) is a partial function mapping predicate names to (possibly

infinite) sets of pairs, consisting of a heap and a sequence of locations in the

heap.

Example 6.4 (predicate interpretation). Let P1 and P2 be names in Pred.

Then we can define the following (finite) predicate environment η.

η = { P1 7→ {〈[l1], {l1 7→ 〈l2, nil〉, l2 7→ 〈l1, nil〉}〉},

P2 7→ {〈[l1, l3], {l1 7→ 〈l2, nil〉, l2 7→ 〈nil, l2〉, l3 7→ 〈l2, l1〉}〉} }

η associates a single pair with P1, where the list of locations contains a

single locations. It also associates and a single pair with P2, where the list

of locations contains two locations.

The variable interpretation i0 and predicate interpretation η0 are empty

interpretations, meaning that dom(i0) = dom(η0) = ∅. We say that a heap

h satisfies a formula F iff h, i0, η0 |= F .

The definition of |= is given in Figure 6.2. We make use of several extra

concepts in this definition.

Square brackets are used to denote the function update operator. For

example, f ′ = f [x 7→ y] is defined so f ′(a) = f(a) when a 6= x and f ′(a) = y

otherwise. If ~a = a1, . . . , an and ~b = b1, . . . , bn are vectors, we write f [~a 7→ ~b]

as shorthand for f [a1 7→ b1] . . . [an 7→ bn]. Finally, we allow [~a 7→ ~b] to stand

for f⊥[~a 7→ ~b], where f⊥ is the empty function that has dom(f⊥) = ∅.

In defining satisfaction for the recursive let formula let Γ in P , we need

to access the individual predicate definitions in Γ. We use dom(Γ) to stand

for a set containing the names of the predicates defined in Γ. We write

‘bind σ(~x) = R to Γ(σ) in F ’ to associate ~x and R with the variables and

right-hand side of the syntactic definition of σ given in Γ.

In defining the fixed-point function for recursive let formulas, we use a

λ notation to define simple functions. The definition λx. Y stands for the

116

h, i, η |= emp iff dom(h) = ∅

h, i, η |= (x 7→ V1, V2) iff dom(h) = {[[x]]i, [[V1]]i, [[V2]]i} and
h([[x]]i) = ([[V1]]i, [[V2]]i) and
h([[V1]]i) = h([[V2]]i) = �

h, i, η |= P ∗Q iff there exist h0, h1 such that h0 · h1 = h
and h0, i, η |= P and h1, i, η |= Q

h, i, η |= P ∨Q iff h, i, η |= P or h, i, η |= Q

h, i, η |= ∃x. P iff exists v ∈ Loc
such that h, i[x→ v], η |= P

h, i, η |= σ(V1, . . . , Vn) iff (([[V1]]i, . . . , [[Vn]]i), h) ∈ η(σ)

h, i, η |= let Γ in P iff h, i, η [β 7→ k(β)]β∈dom(Γ) |= P

where k = fix λk0.λσ ∈ dom(Γ).
bind σ(~x) = Q to Γ(σ)

in {(~l, h) | h,
[

~x 7→ ~l
]

, η
[

β 7→ k0(β)
]

β∈dom(Γ)
|= Q}

Figure 6.2: Definition of satisfaction for separation logic.

function taking a single input value and substituting all instances of x in Y

with the input value.

Definition 6.4 (heap fusion). The heap h0 · h1 denotes the fusion of the

two heaps h0 and h1. This is defined only if the set of defined, non-�
locations for the heaps are disjoint. That is, no location l exists such that

both h0(l) ∈ (Elem × Elem) and h1(l) ∈ (Elem × Elem).2 The fusion

overwrites �-values with known values when fusing the two heaps. Fusion

is defined as follows, if the two heaps’ non-unknown domains of definition

are disjoint.

h0 · h1(l) =



















hi(l) if hi(l) ∈ (Elem× Elem) ∧ i ∈ {0, 1}

� if hi(l) = � ∧ hj(l) ∈ {�,⊥} ∧ i, j ∈ {0, 1} ∧ i 6= j

⊥ otherwise

2The semantics presented in [74, 52] define this fusion as simple disjoint union, which
our definition reduces to in heaps without �-valued addresses. Our introduction of the
unknown value � makes the definition heap fusion a little more complex however.

117

Example 6.5 (heap fusion). Let heaps h1, h2 and h3 be defined as follows.

h1 = {l1 7→ 〈nil, l3〉, l3 7→ 〈nil, l2〉}

h2 = {l2 7→ 〈l3, nil〉, l3 7→ �}
h3 = {l1 7→ 〈nil, l2〉}

Then the fusion of h1 and h2 is defined as follows.

h1 · h2 = {l1 7→ 〈nil, l3〉, l2 7→ 〈l3, nil〉, l3 7→ 〈nil, l2〉}

Note that the unknown value for l3 in h2 is overwritten by the definite

value for l3 in h1. The fusion of h1 and h3 is undefined, as location l1 has a

non-� value in both heaps.

The fixed-point definition for recursive predicates is defined with respect

to the following ordering on predicate interpretations.

Definition 6.5 (≤p). We define the relation ≤p over predicate interpreta-

tions with a given set of predicate names by simple set-inclusion for each

symbol. So η1 ≤p η2 if for every predicate symbol σ in the domain of η1, it

holds that η1(σ) ⊆ η2(σ).

Example 6.6 (≤p). Suppose h1 and h2 are heaps, σ1 and σ2 are predicate

names, and l1, l2 are locations. We define the predicate interpretations η1,

η2 and η3 as follows.

η1 = {σ1 7→ {〈[l1, l2], h1〉}, σ2 7→ ∅}

η2 = {σ1 7→ {〈[l1, l2], h1〉, 〈[l1, l2], h2〉}, σ2 7→ {〈[l1, l2], h1〉}}

η3 = {σ1 7→ {〈[l1, l2], h1〉}, σ2 7→ {〈[l1, l2], h1〉, 〈[l1], h2〉}}

Then η1 ≤p η2 holds, but η2 and η3 are incomparable.

6.1.4 Differences from standard separation logic

The semantics of most of the non-recursive operators in our fragment are

close enough to the intuitive behaviour described in §6.1.2 that we will not

explain them on a case-by-case basis. The exceptions are in the handling

of dangling values, the semantics of predicate definitions, and the scope of

variables, all of which differ substantially from the conventional semantics

presented in [74, 52].

118

Handling of dangling values

Normally in separation logic, dangling values (for example, y and z in the

formula ∃xyz. x 7→ y, z) are satisfied by any arbitrary value assignment. By

contrast, under our semantics a dangling heap locations must contain the

special unknown heap element �, rather than an arbitrary heap element.

This means that a heap that satisfies the formula x1 7→ x2, x3 should define

a value for three locations, two of which consist of �.

The unknown value is included in our semantics to avoid the problem

of modelling dangling pointers in a hyperedge replacement grammar. With-

out the unknown value, a grammar would have to construct every possible

instantiation of dangling values by attaching them to arbitrary heap nodes.

The addition of � does not seem too radical a modification. The se-

mantics is still sufficiently close to the standard semantics to be of general

interest. If a formula contains a dangling value, instead of an arbitrary value

the value in a satisfying heap must be �. In formulas without dangling vari-

ables, the semantics are identical.

Semantics of predicate declarations

Our semantics for recursive predicates differs from the semantics given in [52]

(on which it is based) and we will therefore examine it in detail. A predicate

interpretation (defined in Def. 6.3) records the meaning of predicates, by

associating each predicate name in Pred with a sets of pairs. Each of these

pairs consists of a heap, which is a satisfying instance of the predicate, and

a sequence of locations, which form the points to which the arguments of

the predicate are bound.

The satisfaction relation for an instance of a predicate σ in the predicate

interpretation η is defined as follows.

h, i, η |= σ(V1, . . . , Vn) iff (([[V1]]i, . . . , [[Vn]]i), h) ∈ η(σ)

A predicate σ(x1, . . . , xn) is satisfied by a heap h and interpretations i,

η if there exists a pair ((l1, . . . , ln), h′) ∈ η(σ) such that (1) h = h′ and (2)

the sequence of locations l1, . . . , ln correspond to locations [[x1]]i, . . . , [[xn]].

New predicates are defined using a recursive let-statement. A formula

let Γ in P is satisfied by a heap h in variable interpretation i and predicate

119

interpretation η, if h satisfies P in a new predicate interpretation η[β 7→

k(β)] recording the semantics of the predicates defined in Γ.

The predicate interpretation η[β 7→ k(β)] is defined over all of the pred-

icate names defined in Γ as the value of newly-constructed predicate inter-

pretation k. This k is defined as the least fixed-point with respect to ≤p of

the following function, which we call fη,Γ.

fη,Γ = λk0. λσ ∈ dom(Γ).

bind (σ(~x) = Q) to Γ(σ)

in {(~l, h) | h,
[

~x 7→ ~l
]

, η
[

β 7→ k0(β)
]

β∈dom(Γ)
|= Q}

The satisfaction relation for let Γ in P is then as follows.

h, i, η |= let Γ in P iff h, i, η [β 7→ k(β)]β∈dom(Γ) |= P

where k = fix fη,Γ

The function fη,Γ takes as its argument a predicate interpretation k0 and

returns a predicate interpretation fη,Γ(k0). Intuitively fη,Γ applies a single

iteration of the recursive definitions given in Γ. Let σ(~x) = Q be a definition

in Γ. The function fη,Γ is defined so that fη,Γ(k0, σ) is the set of pairs that

satisfy Q in the predicate interpretation k0.

The least fixed-point of fη,Γ is the least predicate interpretation such that

another iteration of the recursion does not alter the predicate interpretation.

This fits with our intuitive understanding of a recursive predicate definition.

It is important to show that our modified semantics for separation logic

gives a semantics to all formulas in the fragment. This is trivially true for

let-free formulas, but we must prove that a fixed-point exists for let formulas.

The existence of a least fixed-point has been proved for other versions of the

separation-logic semantics with let-statements [52]. However, the semantics

given in this chapter have been modified from the ones appearing in these

papers, which means that we must re-prove the result.

Lemma 6.1 (existence of fixed-point3). Let fη,Γ be the function constructed

by the satisfaction relation to define the semantics of a let-expression. A

least fixed-point for fη,Γ is guaranteed to exist.

Proof. The existence of a least fixed-point for the function fη,Γ is guaranteed

by Tarski’s fixed-point theorem [75]. Let (L,≤) be some complete lattice,

3This proof was suggested by Hongseok Yang in personal communication.

120

meaning that any subset of L has both a least upper bound and greatest

lower bound. Let f be a monotone increasing function over L (that is, for

l1, l2 ∈ L, if l1 ≤ l2, then f(l1) ≤ f(l2)). Then Tarski’s theorem states that

the set of fixed-points of f is also a complete lattice with respect to ≤. This

implies there must exist a least fixed-point of f .

It is clear from the definition of ≤p that every set of predicate interpreta-

tions has both a least upper bound and a greatest lower bound, constructed

respectively by set union and intersection over each symbol. Therefore the

class of predicate interpretations over a given set of predicate names forms

a complete lattice.

By Tarski’s result, to show that a least fixed-point exists for the function

fη,Γ, we need only show that it is monotonic increasing with respect to ≤p. In

other words, given the function fη,Γ defined by the semantics of satisfaction

from a particular separation logic formula, we want to show that η1 ≤p η2

implies fη,Γ(η1) ≤p fη,Γ(η2). As our fragment of separation logic is free of

negation, it is simple to show by structural induction that for any symbol

σ, any pair present in fη,Γ(η1) must also be in fη,Γ(η2). This completes the

proof.

Handling of variable scope

Our semantics for recursive predicates differs from the semantics of [52] in

its handling of logical variables. In the original semantics, variables scope

over predicate definitions, while in our semantics they do not. This means

that free variables cannot be meaningfully used in predicate definitions. All

variables in the body of a predicate must be bound, either by an existential

quantification, or by the argument names for the predicate.

We restrict variable scope in this way to reduce the complexity of map-

ping predicates to non-terminal hyperedges. Passing variables by scope is

difficult to simulate correctly in a hyperedge replacement grammar. To do

it successfully we must analyse the formulas to see which variables are used

by each predicate’s right-hand side and then add extra attachment points

to hyperedges to pass nodes corresponding to these variables. Restricting

scope makes the mapping considerably easier.

We justify this change to the semantics by observing, that our semantics

is identical to the semantics of [52] for formulas without free variables in

predicate definitions. We also observe that for any formula defined under

121

the semantics of [52], an equivalent formula can be constructed without free

variables in predicate definitions. This is because the set of variable names

referred to in a formula is always finite, so variables can always be passed as

arguments to a predicate definition, rather than passed implicitly by scope.

For example, consider the following formula, which passes the variable x

implicitly by scope.

let f(z) = z 7→ x, nil in f(y)

This can be converted to the following formula by converting the variable

x into a predicate argument.

let f(z1, z2) = z1 7→ z2, nil in f(y, x)

As a result, restricting variable scope in our semantics results in no

alteration in expressive power.

6.2 Flattening separation logic formulas

Mapping directly from our fragment of separation logic to graph grammars is

difficult, because the potential nesting of let-constructs makes the definition

of productions complex. For this reason, our mapping from formulas to

grammars operates over the restricted domain of flat formulas.

Definition 6.6 (flat formula). A formula let Γ in P ∈ SL is a flat formula

if Γ and P are let-free. SLF is the class of all flat formulas in SL.

Example 6.7 (flat formula). The following formula is flat, as it contains

only a single outermost let.

let P (x) = x 7→ nil, nil in ∃y, z. P (y) ∗ P (z)

However, the following formula is not flat, as it contains more than one

let, and in any case neither of the lets is outermost.

(let P (x) = x 7→ nil, nil in ∃y. P (y)) ∨ (let Q(x) = emp in ∃y.Q(y))

In this section we show that every formula in our fragment can be rewrit-

ten as an equivalent flat formula. This means that restricting our mapping

to flat formulas does not reduce its power.

122

Any let-free formula F can be converted to the corresponding flat formula

by embedding it in a let-statement with no predicate definitions. Non-let-

free formulas must be explicitly flattened.

Before flattening, we must first ensure that predicate names are used

unambiguously in formulas. The let-construct in our fragment operates in

the same way as variable quantification, in that predicate instances can be

either bound or free. A predicate instance is bound if it exists inside a

let-expression that defines a meaning for the predicate. Other predicate

instances are free.

A formula in our fragment is conflict-free if each predicate name is used

in the scope of at most one let-expression. This means that different let

expressions must define predicates with different names, and also that the

names of free predicate instances must not be used in any let-expression’s

definitions. Any formula in our fragment can be rewritten as an equivalent

conflict-free formula.

Lemma 6.2. Let F be a formula in SL. Then there exists a corresponding

conflict-free formula F ′ ∈ SLF such that for any heap h, variable interpre-

tation i and predicate interpretation η, h, i, η |= F ⇐⇒ h, i, η |= F ′.

Proof. In the following, let F [a/b] stand for formula F with all free instances

of the predicate name a replaced by b.

We prove our result by showing that free-variable rewriting alters only

the names of the variables in the satisfying predicate interpretation. For

any predicate name σ and unused predicate name ς, if h, i, η |= F , then

h, i, η[σ 7→ ⊥][ς 7→ η(σ)] |= F [σ/ς]. This result follows trivially from the

semantics of satisfaction.

We then apply this result to show that for any let-expression F =

let Γ in P , h, i, η |= F if and only if (s, h), η |= let Γ[σ/ς] in P [σ/ς]. This

follows from the fact that replacing Γ with Γ[σ/ς] result in a predicate in-

terpretation k[σ 7→ ⊥][ς 7→ k(σ)], where k is the predicate interpretation

defined by Γ.

Once we have this result for let-formulas, it follows by structural in-

duction that we can replace any bound predicate name in a formula with

an arbitrary unused predicate name without altering the semantics of the

formula. Therefore, any conflicting predicates can be renamed.

We now define a function that takes as its input an arbitrary conflict-

123

flat(P ∗Q)
def
= lift(flat(P) ∗ flat(Q))

flat(P ∨Q)
def
= lift(flat(P) ∨ flat(Q))

flat(∃x. P)
def
= lift(∃x.flat(P))

flat(let Γ in P)
def
= lift(let flat(Γ) in flat(P))

flat(σ1(~x1) = R1 . . . σn(~xn) = Rn)
def
=

σ1(~xn) = flat(R1) . . . σn(~xn) = flat(Rn)

Figure 6.3: Flattening function flat .

free formula in our fragment and produces a sematically-equivalent flattened

formula. A formula is flattened by incrementally ‘promoting’ let-expressions

outwards, merging together predicate definitions, until only the outermost

let remains.

The flattening function flat is defined by a bottom-up transformation of

the structure of a formula. The flattening itself is performed by the function

lift , which takes as its argument a formula F with flat sub-expressions and

produces a flattened formula lift(F). Function flat first applies flat to the

sub-expressions of the formula, and then applies the rewriting function lift

to the resulting formula.

Definition 6.7 (flat ,lift). flat is defined in Figure 6.3. All of the unintro-

duced cases for flat are the identity function on formulas. The rewriting

function lift is defined in Figure 6.4. Here, the variables P and Q always

stand for let-free formulas. Once again, all unintroduced cases are defined

as the identity.

Example 6.8 (flattening function). Consider the following non-flat formula:

let (σ1 = (let σ1 = emp in σ1())) in (let (σ1 = emp) in σ1())

We first convert the formula into an equivalent non-conflicting formula

by rewriting the predicate names.

let (σ1 = (let σ2 = emp in σ2())) in (let (σ3 = emp) in σ3())

Applying flat gives the following derivation.

124

lift(∃x. let Γ in P)
def
= let Γ in ∃x. P

lift((let Γ in P) ∗Q)
def
= let Γ in (P ∗Q)

lift(P ∗ (let Γ in Q))
def
= let Γ in (P ∗Q)

lift((let Γ1 in P) ∗ (let Γ2 in Q))
def
= let Γ1, Γ2 in (P ∗Q)

lift((let Γ in P) ∨Q)
def
= let Γ in (P ∨Q)

lift(P ∨ (let Γ in Q))
def
= let Γ in (P ∨Q)

lift((let Γ1 in P) ∨ (let Γ2 in Q))
def
= let Γ1, Γ2 in (P ∨Q)

lift(let Γ1 in (let Γ2 in P))
def
= let lift(Γ1), Γ2 in P

lift(let Γ in P)
def
= let lift(Γ) in P

lift(Γ1,Γ2)
def
= lift(Γ1), lift(Γ2)

lift(σ(~x) = let Γ in P)
def
= Γ, σ(~x) = P

Figure 6.4: Rewriting function lift .

flat(let (σ1 = (let σ2 = emp in σ2())) in (let (σ3 = emp) in σ3()))

⇒ lift(let flat(σ1 = (let σ2 = emp in σ2()))

in flat(let (σ3 = emp) in σ3()))

⇒∗ lift(let (σ1 = lift(let (σ2 = emp) in σ2()))

in lift(let (σ3 = emp) in σ3()))

⇒∗ lift(let (σ1 = σ2(), σ2 = emp) in (let (σ3 = emp) in σ3()))

⇒∗ let (σ1 = σ2(), σ2 = emp, σ3 = emp) in σ3()

The result is a flat formula.

Termination of lift is ensured because the only recursion in lift occurs

over definitions inside a let-expression. By assumption, the right-hand sides

of these predicate definitions are flat, so the recursion only needs at most

a single iteration on each definition. Termination of the flattening function

flat is guaranteed (assuming termination of lift) by the fact that flat simply

traverses a formula.

It is simple to see from the structure of lift that each application results

in a flat formula, under the assumption that all the input formula’s sub-

expressions are flat. The formulas constructed by flat are guaranteed to be

125

flat by the fact that lift produces flat formulas.

It remains for us to prove that flat is sound.

Lemma 6.3. Let F be a separation logic formula, h a heap, i a variable

interpretation and η a predicate interpretation such that h, i, η |= F . Let σ be

a predicate name that is unused in F . Then for any value R ∈ Pow(Loc∗ ×

H) defining a new predicate interpretation η′ = η[σ 7→ R], it holds that

h, i, η′ |= F .

Proof. This follows directly from the definition of satisfaction. Extending a

predicate interpretation by unused predicate symbols leaves the semantics

of the existing symbols unchanged.

We now show that the flattening function flat is correct, in the sense

that the result of applying flat to a formula P is a semantically equivalent

formula flat(P). To do this, we first show that lift is semantics-preserving.

Proposition 6.4. Let F be a conflict-free formula, h a heap, i a variable

interpretation and η a predicate interpretation. Then h, i, η |= F if and only

if h, i, η |= lift(F).

Proof. First consider the case where we have let-expression

let Γ1 in (let Γ2 in P)

and the set of predicates defined in Γ1 is disjoint from the set defined in

Γ2. This formula is equivalent to let Γ1,Γ2 in P because the predicate in-

terpretation k2 defined by Γ2 is unaltered by the addition of the predicate

interpretation k1 defined from Γ1. We can use this to show the correctness

of most of the other cases.

Consider the function lift applied to a separating conjunction, disjunc-

tion, or existential quantification. By the predicate interpretation extension

result given in Lemma 6.3, we know that the predicate interpretation can be

extended without altering the semantics. Because the function is conflict-

free, we can promote a single let expression from a sub-expression to the

surrounding expression without altering the semantics. All of the defini-

tions of lift over these constructs can be composed from let-fusion and a

single promotion, so all of them are safe.

Finally, we need to show that the promotion of rules from the right-hand

side of a predicate definition to the surrounding set of definitions is safe. This

126

follows from the assumption that formulas are conflict-free, which ensures

that the new fixed-point derived by promoting a definition is the union of

the two old fixed-points.

Note that this result applies only to formulas that are conflict-free. With-

out this assumption, lift can alter the semantics of a formula in two ways.

First, a let-expression could be promoted to surround a free variable that is

included in the let-expression’s rule-set. Second, two let-expressions that de-

fine the same predicate name could be merged, resulting in a new definition

for both.

We can now prove that any formula can be converted into an equivalent

flat formula.

Corollary 6.5 (correctness of flat). Let F be a formula in SL. Then there

exists a flat formula F ′ in SLf such that for any heap h, variable interpre-

tation i and predicate interpretation η, h, i, η |= F if and only if h, i, η |= F ′.

Proof. Any let-free formula F can be converted to the corresponding flat

formula let in F , that is by embedding it in a let-statement with no predicate

definitions. Non-let-free formulas must be flattened using flat .

All formula rewrites performed by flat are applications of lift , so the fact

that flat is semantics-preserving for conflict-free formulas follows as a direct

consequence of Proposition 6.4. Lemma 6.2 states that for any formula,

a corresponding conflict-free formula exists, so flat can always be safely

applied, resulting in a flat formula corresponding to F .

6.3 Heap-graphs and mapping between domains

Separation-logic formulas and hyperedge-replacement grammars both define

sets of graph-like structures. However, the two approaches operate over

different domains. For this reason, to define semantics-preserving mappings

between formulas and grammars, we must first define a mapping between the

domains of the two approaches. Because our mapping should be semantics-

preserving, the mapping between domains must be bijective.

To begin with, we identify the two domains. A separation logic formula

defines the class of heaps that satisfy the formula. The content of this class

is defined by the satisfaction relation given in §6.1.3.

127

A hyperedge replacement grammar defines a class of graphs. We are

interested, however, only in those grammars that define classes of so-called

heap-graphs. That is, graphs for which there exists a corresponding heap.

Intuitively, we model defined locations by nodes, points-to assertions by E-

labelled edges of arity 3, and nil by a unique edge of arity 1 pointing to a

node modelling nil.

Definition 6.8 (well-sourced). We say that a graph is well-sourced if each

node is the source for at most one hyperedge.

Definition 6.9 (heap-graph). We say that a hypergraph H is a heap-graph

if (1) The label set is {E, nil}, where E has arity 3, and nil arity 1. (2) There

exists exactly one nil-labelled edge. (3) The graph is well-sourced. We use

HG to stand for the set of all heap-graphs.

Example 6.9 (heap-graph). The right-hand side of Figure 6.5 shows a

heap-graph containing four nodes and four edges.

We now define α, a bijective mapping from heaps to heap-graphs. As

α is bijective, this also defines by implication a bijective inverse α−1 from

heap-graphs to heaps.

The function α constructs a node for each heap location with a defined

value and the atomic value nil. The single nil-value results in a single node

with an attached nil-labelled hyperedge. Pointers between locations result

in E-labelled hyperedges. Locations that have the value � result in nodes

which are not the source of any hyperedge.

For example, the following diagram shows a fragment of a heap consisting

of a single location l in a heap h, where h(l) is defined as a pair of locations

(a1, a2). It also shows the corresponding heap-graph fragment, consisting of

a node with an attached E-labelled hyperedge.

. . .

. . .

α
−→
α−1

←−
E

.

1

2 3

Definition 6.10 (α). The function α : HE → HG maps from heaps to heap-

graphs. Given a heap h, the heap-graph α(h) consists of: (1) A vertex vk

for each heap element k ∈ Elem where either k ∈ dom(h), or k = nil. (2) A

128

nil
nil

b

a

c

α
−→
α−1

←−

E

nil

E

E

3

2 1

32

1

2

3

1

1

b

a c

Figure 6.5: Left: A heap h with three locations. Right: The corresponding
heap-graph α(h).

hyperedge ek for each heap location k ∈ dom(h) where h(k) = (k1, k2), such

that l(ek) = E, and att(ek) = vk, vk1
, vk2

. (3) A hyperedge enil such that

l(enil) = nil and att(enil) = vnil.

The mapping α is a bijection (with heaps and graphs considered unique

up to isomorphism) because each element of the heap results in sufficient

nodes and edges to record its relationship to other elements in the resulting

heap-graph. As a result, the heap-graph constructed for a particular heap

h is distinct from the heap-graph resulting from any other heap. As α is

bijective, the it implicitly defines the inverse bijective mapping α−1 : H → G

from graphs to heaps.

Example 6.10 (α). The domain of the heap on the left-hand side of Figure

6.5 contains three locations. The resulting heap-graph, shown on the right of

Figure 6.5, contains three E-labelled hyperedges, corresponding to locations

defined by the heap function, and four nodes. The heap locations are labelled

a, b, c, and the corresponding nodes and edges in the graph are identified by

dashed regions. The extra node corresponds to the nil-element of the heap.

6.4 Heap-graph grammars and

source normalisation

Our correspondence operates between formulas in SL and hyperedge re-

placement grammars producing only heap-graphs.

129

Z =

f f

1 1

2 2

3 3

1

nil

f ⇒ E

1

1

22

3

3

E

2

1

12

3

3

Figure 6.6: Grammar producing non-heap graphs.

Definition 6.11 (heap-graph grammar). We call a grammar G a heap-graph

grammars if all the graphs in L(G) are heap-graphs. The set HGG refers to

the class of all possible heap-graph grammars.

When constructing the grammar that corresponds to a separation-logic

formula, we must be careful that we construct a heap-graph grammar. Using

the intuitive approach described in §7.1, it is easy to inadvertently construct

a grammar with a language containing non-heap-graphs. This is because

the simple approach does not restrict the sources of edges. The following

example illustrates the problem.

Example 6.11 (näıve grammar construction). Consider the following re-

cursive definition.

let f(z1, z2) = ((z1 7→ z2, nil) ∨ (z2 7→ z1, nil)) in ∃x, y. f(x, y) ∗ f(x, y)

A näıve mapping from formulas to grammars translates the single pred-

icate definition into a pair of productions over the symbol f , and the in-

subexpression to an initial graph. This gives the grammar shown in Fig.

6.6.

The language of this grammar includes heap-graphs, such as graph A

below, but it also includes non-heapgraphs, such as graph B.

A:

E E

1 2

2 1

3 3

1
nil

B:

E E

1 1

2 2

3 3

1
nil

130

The problem with graph B is that the first attachment points of both

E-labelled edges are the same. Clause (3) of the definition of a heap-graph

(Def. 6.9) forbids this, because such graphs do not correspond to heaps.

The simplest solution (if it worked) would be to define syntactic con-

ditions on rules which ensure that grammars are heap-graph grammars. It

is easy to ensure syntactically that the first two clauses of Def. 6.9 are

respected by a grammar. The first is just a restriction on the grammar’s

terminal label-set, while the second requires the existence of a single nil-

labelled edge.

The third clause, that the graph is well-sourced (see Def. 6.8), is more

tricky to ensure. A sequence of derivations violating this requirement may

involve many rules, and removing any of the rules may make the grammar

a heap-graph grammar. Conformance to this requirement is a property of

the whole grammar, rather than a simple syntactic property that can be

checked on a rule-by-rule basis.

We could simply ignore non-heap-graphs in the languages of grammars

constructed by the mapping. This seems inelegant however. Instead we show

that for any grammar we can construct a corresponding grammar with all

non-heap-graphs removed from its language.

Definition 6.12 (source normalisation). A grammar H ′ is a source nor-

malisation of grammar H if L(H ′) is the set of all well-sourced graphs in

L(H).

To make use of source normalisation in our mappings, we define a source

normalisation operator ⌊−⌋. This takes an input grammar H and constructs

a grammar ⌊H⌋ such that ⌊H⌋ is a source normalisation of H.

To show that we can implement this operator, we need to show that

a source normalisation can be constructed for each input grammar. Given

a hyperedge-replacement grammar and an arbitrary property, we cannot

necessarily construct a new grammar with a language consisting of the in-

tersection between the two.

In [27] it is proved that for any hyperedge replacement grammar H and

predicate P expressing a compatible property in the sense of [27], definition

2.6.1, a HR grammar HP can be constructed so that L(HP) = {g ∈ L(H) |

P (g)}.

131

Intuitively, a compatible property is a property that can be decomposed

and checked piecewise. To check such a property for a large hypergraph it

suffices to examine the smaller component graphs constructed during the

derivation of the large graph. That is, suppose we have a non-terminal hy-

pergraph G and a derivation to a terminal graph H. We can first check a

compatible property for the component graphs that replaced G’s nontermi-

nal edges, then compose these properties in the initial graph G to check the

compatible property for H.

Restriction to a compatible property works because any such property

can be checked purely by examination of the constituent graphs formed from

non-terminal nodes. Consequently the property can be ensured statically by

embedding property information into nonterminal symbols.

To show that for any grammar H, some source normalisation ⌊H⌋ can be

constructed, it suffices to show that membership of the class of well-sourced

graphs is a compatible property. We do this by constructing a compatible

predicate WS0 such that WS0(H) holds for graph H if H is well-sourced.

We now state formally the definition of a compatible predicate. This

definition is taken verbatim from [38], with minor updates to conform to

our notation.

Definition 6.13 (projection). If we have graphs a derivation R⇒∗ H and

edge e ∈ ER, we use H(e) to stand for the subgraph of graph H resulting

from edge e in the derivation. We call this graph the projection of e in H.

Definition 6.14 (compatible predicate). Let C be a class of HR grammars,

I a finite set, called the index set, PROP a decidable predicate defined on

pairs (H, i), with H ∈ HC , and i ∈ I, and PROP ′ a decidable predicate

on triples (R, assign, i) with R ∈ HC , a mapping assign : ER → I, and

i ∈ I. Then PROP is called (C,PROP ′)-compatible if for all HRG =

〈N,T, P,Z〉 ∈ C and all derivations A• ⇒ R ⇒∗ Hi with A ∈ N ∪ T

and H ∈ HT , and for all i ∈ I, PROP (H, i) holds if and only if there

is a mapping assign : ER → I such that PROP ′(R, assign, i) holds and

PROP (H(e), assign(e)) holds for all e ∈ ER.

A predicate PROP0 on HC is called C-compatible if there exist predi-

cates PROP and PROP ′ such that PROP is (C, PROP ′)-compatible and

PROP0 holds for a graph H if and only if PROP (H, i0) holds for some

index i0.

132

This definition requires the existence of three predicates PROP , PROP ′

and PROP0. Property information is held using index values. PROP is

the property defined without any auxiliary information recorded for non-

terminal nodes. PROP ′ records auxiliary information for nonterminal edges

using the assignment function assign. PROP0 eliminates the auxiliary in-

formation from PROP by just requiring that PROP holds for some index.

Intuitively, PROP is called (C,PROP ′)-compatible if for every deriva-

tion R ⇒∗ H, if PROP holds for H then there exists an assign such that

PROP ′ holds for R, and the information in assign holds for the projections

of the edges in H.

Example 6.12 (compatible predicate). We show that the property ‘graph

contains at most one X-labelled edge’ is compatible. We make the index set

{0, 1}. The predicate CX(H, 1) holds if H contains a single X-labelled edge,

and CX(H, 0) holds if it contains no such edge. For any nonterminal graph

R, CX ′(R, assign, 1) holds if either (1) R contains an X-labelled edge and

assign assigns 0 to all nonterminal edges, or (2) assign assigns 1 to a single

nonterminal edge and R contains no X-labelled edges. CX ′(R, assign, 0)

holds if R contains no X-labelled edges and assign assigns 0 to all nonter-

minal edges.

CX is CX ′-compatible because for any derivation R⇒∗ H, if CX(H, 1)

holds then the single X-labelled node must either appear in R, or appear

in the projection of one of the nonterminal edges in R. Consequently there

must exist an assignment assign such that CX ′(R, assign, 1) holds. The

same holds for CX(H, 0).

Let HRG be the class of all hyperedge replacement grammars. We now

define predicates WS′, WS and WS0, such that WS0 is HRG-compatible

according to Definition 6.14 and WS0 holds if a graph is well-sourced.

Definition 6.15 (WS′, WS, WS0). Let WS′ be a predicate defined on

triples (R, assign, I), with R ∈ HC a hypergraph over label-set C, assign :

EN
R → Pow(N) a mapping from non-terminal hyperedges to sets of natural

numbers, and I ⊆ N a finite set of natural numbers. The set ass records the

configuration of terminal edges which can replace the non-terminal edges,

while I records the edges attached to the external nodes of R.

WS′(R, assign, I) holds if and only if: (1) For each node v ∈ VR there

exists at most one edge e ∈ ER such that either l(e) is terminal and

133

att(e)[1] = v, or l(e) is non-terminal and there exists an n ∈ assign(e)

such that att(e)[n] = v. (2) For each i ∈ I there exists exactly one edge e

such that either l(e) is terminal and s(e) = extR(i), or l(e) is non-terminal

and there exists an n ∈ assign(e) such that att(e)[n] = extR(i).

The binary predicate WS is defined as WS(H, I) = WS′(H, emp, I).

The predicate WS0(H) holds if WS(H, I) holds for some I ⊆ N.

Intuitively the predicate WS(H, I) holds when the graph H is well-

sourced and terminal, and I records the external nodes that are the sources

of edges. WS0(H) records that the graph is well-sourced, by quantifying

over I.

Example 6.13 (WS′). Consider the following graph R with terminal edge

label E and non-terminal edge label X. Edges have subscripts on their

bottom left corner to uniquely identify them as the edges e1, e2 and e3.

 E

1

2 3

1

2

2

1

3

 X

1

2 3

3

3

 E
2

1

Then WS′(R, assign, I) holds, with ass = {e3 7→ {1, 3}} and I = {1, 3}.

WS′(R, assign, I) holds because every node is either the source of at most

one terminal edge, or is attachment point 1 or 3 of the nonterminal node

e3. The assign function records that these attachment points will reduce to

the sources of terminal nodes. I records the sources of the external nodes

of the graph, including those that will be generated from e3.

Lemma 6.6. Predicate WS0 holds for a graph H if and only if H is well-

sourced.

Proof. The if direction follows directly from the definition of predicate WS′.

If graph H is well-sourced, then the first requirement for WS′ must be

satisfied by definition, because every edge is terminal and every node has at

most a single E-labelled edge with the node as its first attachment point.

The second requirement is automatically satisfied for the same reason; as

every node has either zero or one edge with the node as its source, any

appropriate I can always be constructed.

134

Now we prove that if H satisfies WS0, then H must be well-sourced. The

condition on terminal edges ensures that the graph satisfies the restriction

on E-labelled edge sources. The definition of a heap-graph (Definition 6.9)

places no restriction on the external nodes of the graph, meaning that any

I for the external nodes will result in a well-sourced graph.

Lemma 6.7. The predicate WS0 is a compatible predicate.

Proof. According to the Definition 6.14, to show that WS0 is compatible

we must show that for any derivation R⇒∗ H, WS(H, I) holds if and only

if there is a mapping assign : EN
R → Pow(N) such that WS′(R, assign, I)

and WS(H(e), assign(e)) holds for all e ∈ EN
R .

The ‘if’ direction is simple. Assume that the mapping assign : EN
R →

Pow(N) exists. If we consider a node n ∈ NH , then there must be at

most one attached edge with n as a source. This is because the function

assign records the attached edges for the external nodes of the projected

graph H(e), so if we replace the non-terminals with the terminal graphs,

WS(H, I) must hold.

The ‘only-if’ is slightly more difficult. Assume that WS(H, I) holds.

Then there must exist an assignment assign such that WS′(R, assign, I)

and WS(H(e), assign(e)) holds for all e ∈ EN
R . Assignment assign can be

constructed by removing the subgraphs H(e), constructing a set I such that

WS(H(e), I) holds, and assigning to assign(e) the set I. the values of I here

can be defined by simple examination of the projections H(e) with respect

to the function WS. By construction the predicates must then satisfy our

requirements.

Proposition 6.8. For any hyperedge-replacement grammar H we can con-

struct a grammar ⌊H⌋ that is a source-normalisation of H.

Proof. In [27] it is proved that given a grammar H ∈ C and a C-compatible

predicate PROP0, we can construct a new grammar H ′ such that a graph

g is in L(H ′) if and only if g ∈ L(H) and PROP0(g). We use this result to

prove that we can define the source-normalisation operator.

Lemma 6.7 shows that the predicate WS0 is a compatible predicate,

and Lemma 6.6 shows that WS0(H) holds if and only if H is well-sourced.

Therefore, by application of the language restriction result of [27] we can

135

construct a grammar ⌊H⌋ such that a graph g is a member of L(⌊H⌋) if and

only if g ∈ L(H) and g is well-sourced.

The source normalisation operator works by recording in the nonterminal

symbols which external node (or nodes) will receive the source of a terminal

edge.

Example 6.14 (source normalisation). We apply the source normalisation

operator to the non-heapgraph grammar shown in Fig. 6.6. The operator

first modifies the nonterminal symbol f , giving cases f1 and f2. The symbol

f1 points the first attachment point of the terminal E to the first external

node, while f2 points it at the second external node.

The operator then factors the initial graph into two graphs by replacing

the two instance of f with f1 and f2. The fact that the symbol name

records the location of the source means that we can ensure statically that

the constructed graphs result in well-sourced terminal graphs. The two

resulting graphs are isomorphic, so the new grammar has only a single initial

graph. The resulting source-normalised grammar is as follows.

Z =

f1 f2

1 1

2 2

3 3

1

nil

f1 ⇒ E

1

1

22

3

3

f2 ⇒ E

1

2

21

3

3

This example is quite simple – all of the productions return terminal

graphs. However, the same case-splitting and propagation approach can be

applied to an arbitrarily complex grammar, resulting in a source normalisa-

tion of the grammar.

136

Chapter 7

Mapping between formulas

and grammars

This chapter defines formally the mappings between formulas and grammars

that prove the existence of a correspondence. We show that our mappings

are semantics-preserving. The chapter is structured as follows. Section 7.1

describes intuitively the correspondence between formulas and grammars.

Section 7.2 defines the mapping g from separation logic formulas to hy-

peredge replacement grammars. Then in Section 7.3 we prove that g is

semantics-preserving. Section 7.4 defines the mapping s from hyperedge-

replacement grammars to separation logic formulas. Finally, in Section 7.5

we prove that s is also semantics-preserving.

7.1 Intuitive relationship

A correspondence exists between separation logic formulas and hyperedge

replacement grammars because (1) the recursive definitions commonly used

in separation logic closely resemble hyperedge replacement productions, and

(2) the separating property enforced by separating conjunction corresponds

to the context-free replacement of non-terminal hyperedges. The following

example illustrates this correspondence.

Example 7.1 (binary tree with shared nil-leaf). The following formula

defining the class of all binary trees with nil-labelled leaves was presented in

Example 6.2.

137

let bt(x1) = (x1 7→ nil, nil) ∨

(∃x2, x3. (x1 7→ x2, x3) ∗ bt(x2) ∗ bt(x3))

in ∃x. bt(x)

This formula corresponds to the hyperedge replacement grammar BT =

〈T,N,Z, P 〉. This defines the language of binary tree graphs with a shared

nil-labelled leaf.1 The sets of terminal and non-terminal edge labels are

respectively T = {E, nil} and N = {B}. The initial graph Z and set of

productions P are:

Z =

B

1

2

nil

1

B ⇒

1

E

1

2

2 3

1

E

B B
2

2 2

1

2 3

1 1

The upper node of the initial graph Z corresponds to the address x with

which the predicate bt is called. The lower node of Z models the unique

value nil by a single node with an attached nil-labelled edge. The individual

cases of the production defined for label B in the grammar correspond to

the two disjuncts defining the predicate bt. The first disjunct corresponds

to a terminal branch, and the second a branch and a pair of child trees.

Intuitively the elements of hyperedge replacement grammars and sepa-

ration logic formulas are related as follows:

• Productions over a single nonterminal symbol in the grammar cor-

respond to the definition of a single recursively-defined predicate in

separation logic.

• Terminal hyperedges in the grammar’s initial graph and in the right-

hand sides of productions correspond to separation logic’s points-to

assertion (7→).

• The atomic value nil is modelled as a single node with an attached

nil-labelled hyperedge of arity one.

1The nil-leaves are shared because our mapping from graphs to heaps models nil by a
single node – see §6.3 for justification.

138

• Non-terminal hyperedges in the grammar correspond to instances of

recursively-defined predicates in separation logic. The attachment

nodes of the edges correspond to the arguments passed to the predi-

cate.

We now prove that this correspondence exists by defining a pair of map-

pings and proving that the mappings are semantics-preserving.

7.2 Mapping from formulas to grammars

In this section we define the function g : SLF → HGG that maps from

flat separation logic formulas to hyperedge-replacement grammars. This

mapping implements formally the intuitive mapping between domains that

we described in §7.1.

7.2.1 Basic notions used in the mapping

We first define some extra notions used by the definition. Graphs in the map-

ping g are constructed by ‘gluing together’ small graphs into larger graphs.

These graphs are then used as either the right-hand sides of productions or

as the members of the initial graph-set. To define g we therefore need a

definition for this gluing process. In order to define gluing operations, we

need to identify the nodes that should be merged. We do this using tags

attached to the nodes of a graph.

Definition 7.1 (tagged graph). Let F be a countably infinite set of tags.

A tagged graph T = 〈G, t〉 consists of a hypergraph G and a partial tagging

function t : VG → Pow(F) that associates tags sets to nodes. The tag-set

for a node v is t(v). The function tag(T) gives the union of all tag-sets in

T . A tagged graph is well-tagged if the tag-sets of the nodes are pairwise

disjoint. The tagged graph T \ x is the graph T with the tag x removed

from all tag-sets.

Example 7.2 (tagged graph). We show tags visually as label-sets attached

to graph nodes.

{x, y, z} 1 X 2 {j, k} {x, y, z} 1 X 2 {x, k}

139

In the left two-node graph, the first attachment point of the X-labelled

edge has the tag-set {x, y, z}, and the second has tag-set {j, k}. The left-

hand graph is well tagged. The right-hand graph is not well-tagged, as both

nodes are tagged with x.

Tags are used by the unify labels and graph join operators to merge

graphs.

Definition 7.2 (unify tags). Let T = 〈G, t〉, be a tagged graph. A unifica-

tion step on T is constructed by fusing any pair of nodes v1 and v2 where

t(v1) ∩ t(v2) 6= ∅. The resulting node is tagged with t(v1) ∪ t(v2). The tag

unification of denoted by ⇓T , is the well-tagged graph constructed by the

reflexive transitive closure of unification steps.

Example 7.3 (unify tags). We begin by giving a tagged graph T that is

not well-tagged.

T =

1

2

1

2

1

2�a,x} {b,x} {c,x}

Applying a single tag unification to this graph gives two possible resulting

graphs.

1

2

1

2

1

2

{a,b,x} {c,x}

1

2

1

2

1

2

{a,x} {b,c,x}

The tag unification ⇓T is the graph given below. Here all nodes con-

taining x in their label sets have been merged.

⇓T =

1

2

1

2

1

2

{a,b,c,x}

140

At least one tag unification of a graph is guaranteed to exist because (1)

each unification step decreases the size of the graph, and (2) a unification

step can be applied to any non-well-tagged graph. The tag unification for a

graph is unique because unification steps are confluent.

Definition 7.3 (join). The join of two tagged graphs T0 and T1, denoted

by T0 ⊲⊳ T1, is constructed by combining T0 and T1 by disjoint union, and

then constructing the tag unification of the resulting graph.

Example 7.4 (join). The following diagram show the result of ⊲⊳ when

applied to a pair of graphs with overlapping tag sets.

1

2

{a,e}

{b,d}

⊲⊳

1

3

{c}

2 {a,g}

{d,f}

=

1

2

Y

2

1

{b,d,f}

3

{c}

{a,e,g}

The tagging function for a well-tagged heap-graph is similar to a variable

interpretation for a heap. We define αt as a function mapping a heap h and

variable interpretation i to a tagged heap graph 〈G, t〉.

Definition 7.4 (αt). Let h be a heap and i a variable interpretation. Then

αt(h, i) is the tagged graph 〈G, t〉. Here G is α(h), and the tagging function

t is defined so that for any node v ∈ α(h) and any variable x ∈ Var, x ∈ t(v)

if i(x) = l and l is the unique heap location in h mapped to v by α.

The function αt is bijective to well-tagged graphs, so it defines by im-

plication α−1
t , the inverse function from well-tagged graphs to a heap and

variable interpretation.

Example 7.5 (αt). We apply αt to the following heap and variable inter-

pretation.

h = {l1 7→ 〈l3, nil〉, l2 7→ 〈l4, nil〉, l3 7→ �, l4 7→ �}
i = {x 7→ l1, y 7→ l2, z 7→ nil}

The resulting tagged heapgraph αt(h, i) is as follows.

141

1

2

2

2 3

nil

1

3

{z}

{x} {y}

Tags are used by the expose operator to attach external nodes to a graph.

Definition 7.5 (expose). Let T = 〈H, t〉 be a well-tagged graph, and ~x =

x1, . . . , xn be a sequence of tags such that each xi belongs to tag(T). Then

expose(H,~x) is identical to H, except (1) it has n external nodes, and (2)

the ith external node is the node tagged with xi.

Example 7.6 (expose). Left: a well-tagged graph T . Right: the untagged

graph produced by expose(T, [a, b, c]).

12 Y2

{b,d,f}
1

{c}{a,e,g}
12 Y2

2

1

31

7.2.2 Mapping from formulas to grammars

Function g : SLF → HGG maps a single flat separation-logic formula F

from the restricted fragment we have defined, to a set of initial graphs Z

and a set of productions P . A minimal set N of non-terminal labels and

T of terminal labels are inferred from the labels used in the productions

and the initial graphs. This suffices to define a complete hyperedge replace-

ment grammar H = 〈T,N,P,Z〉. A corresponding heap-graph grammar can

then be constructed by applying the source normalisation operator to this

grammar (see §6.4). Figure 7.1 defines g recursively over the structure of a

separation-logic formula.

g takes as its argument a single let-expression and constructs from it

a grammar. Much of the work of the mapping is done by two subsidiary

functions: h, which constructs a set of graphs from a formula, and r, which

constructs productions.

The function h takes as its argument a let-free formula and constructs

a set of tagged graphs. It does this by recursing over the structure of the

formula. The terminal E-labelled hyperedges are constructed from points-to

assertions, with attached nodes labelled according to the assertion’s variable

142

g[[let Γ in F]] = 〈Z,P 〉
where

H = h[[F]] ⊲⊳ nil1
{nil}

Z = expose(H, {nil})

P = r[[Γ]]

g[[F]] = 〈Z, ∅〉 if F is let-free
where

H = h[[F]] ⊲⊳ nil1
{nil}

Z = expose(H, {nil})

h[[σ(V1, . . . , Vn)]] = ⇓H
where

H =

{V1}
. . .

{Vn}
1 n

σ

n + 1

{nil}

h[[∃x. P]] =
{H ′ | H ∈ h[[P]] ∧H ′ ∼= H \ x}

h[[emp]] = 〈 empty graph 〉

h[[P ∨Q]] = h[[P]] ∪ h[[Q]] h[[P ∗Q]] = h[[P]] ⊲⊳ h[[Q]]

h[[x 7→ V1, V2]] = ⇓H
where

H =

{x}
E

{V1}

{V2}

1
2

3

r[[Γ1,Γ2]] = r[[Γ1]] ∪ r[[Γ2]]

r[[σ(x1, . . . , xn) = P]] = {(σ,H ′) | H ∈ h[[P]]∧
tag(H) = {x1, . . . , xn, nil}∧
H ′ = expose(H, (x1, . . . , xn, nil)) }

Figure 7.1: Mapping g from separation logic formula to hyperedge-
replacement grammar.

143

arguments. Non-terminal hyperedges are constructed from calls to predi-

cates. The attachment points of such a non-terminal edge correspond to the

variable arguments, with the addition of a nil-tagged node. This attachment

point to nil is needed to keep track of a common nil-node for the whole graph.

In both cases, for terminal and nonterminal hyperedges, after generating

the edge the tag unification operator ⇓ is applied, merging all nodes that

have the same label. This ensures that for any variable name x, only a single

node exists with the tag x in its variable-set.

The disjunction operator ∨ merges by union the graph-sets constructed

for each subexpression of the formula. Intuitively, a heap satisfies the dis-

junction if it satisfies either the left-hand subexpression or right-hand subex-

pression, so set-union models the intuitive semantics. The separating con-

junction ∗ constructs a new set of graphs by applying the graph-join operator

⊲⊳ pairwise to the members of the two sets constructed from its subexpres-

sions. Because the tag-set for newly constructed tagged graph corresponds

to sets of variables, this merge fuses any nodes that are pointed to by the

same variable, which results in a correctly-joined set of graphs.

The function r is called by g to handle recursive predicate definitions.

The right-hand sides of the productions are constructed by applying the

h function to the right-hand sides of the predicate definitions, and then

applying the expose operator to attach the appropriate external nodes. Tags

are removed from graphs by the expose operator.

The natural way to model a let formula is as a set of rules defined from

predicate definitions applied to a set of graphs defined by the let body. We

noted in Chapter 2, p. 31 that we have modified the standard definition of

a hyperedge-replacement grammar (as given in for example [27]) to use an

initial set of graphs, rather than the more conventional single initial graph.

The reason for this redefinition was to simplify the definition of s.

As noted in Chapter 2, we could preserve the standard definition by

introducing extra rules to allow a grammar with a single initial graph. We

have decided however that it is simpler to alter the basic grammar definition.

Example 7.7. We can demonstrate the application of g by taking the fol-

lowing small formula for a linked list:

Consider the following small formula, which asserts that the heap con-

144

tains a linked list.

let ll(x1) = (x1 7→ nil, nil) ∨ (∃x2. (x1 7→ nil, x2) ∗ ll(x2)) in ∃x. ll(x)

Applying g to the two subexpressions (x1 7→ nil, x2) and ll(x2) gives the

following pair of single-element graph sets.

h[[x1 7→ nil, x2]] =

{

{x1} 1 E 2
3

{nil}

{x2}

}

h[[ll(x2)]] =
{

{x2} 1 ll 2 {nil}

}

The fusion of these two graphs gives the following single graph. Note that

the label x2 has been removed as per the mapping of existentially quantified

variables.

h[[∃x2. (x1 7→ nil, x2) ∗ ll(x2)]] =















{x1} 1

3 2

E

1 ll 2 {nil}















When combined with the other disjunct in the predicate definition, this

results in the following production definitions.

ll⇒

1 1

3 2

E

2 1 ll 2 3

1

E

1

2

2 3

When combined with an initial graph constructed from ∃x. ll(x), these

productions give a grammar corresponding to the formula.

Example 7.8. Figure 7.2 and Figure 7.3 show a complete derivation of a

graph grammar from the binary tree predicate given in Example 6.2. This

derivation shows the intermediate subgraphs constructed by the function

while building the grammar. ZF is used to refer to sets of initial graphs for

the constructed grammar, and PΓ to refer to sets of constructed productions.

7.3 Proving the correctness of mapping g

We now prove that the mapping g from formulas in SLF to heap-graph

grammars is correct with respect to the semantics of separation logic and

hyperedge-replacement, and of α, the mapping from heaps to heap-graphs.

145

g

u v
le

t
bt

(x
1
)

=
(x

1
7→

n
il
,n

il
)
∨

(∃
x

2
,x

3
.(

x
1
7→

x
2
,x

3
)
∗

bt
(x

2
)
∗

bt
(x

3
))

in
∃
x
.b

t(
x
)

} ~
=
〈Z

F
,P

Γ
〉

=

    

1 bt 2

n
il

1

,
b
t
⇒

1
1 E

2
3

bt1

bt1

2
2

2

1

1

bt 2
3 2

    

w
h
er

e:

Z
F

=
ex

po
se

(

g
[[
∃
x
.b

t(
x
)

]]
⊲⊳

n
il

1
{n

il
}

,
{n

il
})

=
{

1
bt

2
n
il

1

}

P
Γ

=
r

u v
bt

(x
1
)
=

(x
1
7→

n
il
,n

il
)
∨

(∃
x

2
,x

3
.(

x
1
7→

x
2
,x

3
)

∗
bt

(x
2
)
∗

bt
(x

3
))

} ~
=
{(

σ
,g

′)
|
g
∈
G
∧

la
b v

(g
)

=
{x

,n
il
}
∧

g
′
=

ex
p
os

e(
g
,(

x
,n

il
))
}

G
=

g

u v
(x

1
7→

n
il
,n

il
)
∨

(∃
x

2
,x

3
.(

x
1
7→

x
2
,x

3
)

∗
bt

(x
2
)
∗

bt
(x

3
))

} ~
=
G

1
∪
G

2

G
1

=
g
[[(

x
1
7→

n
il
,n

il
)]
]
=

{

{
x

1
}

1
bt

2 3
{
n
il
}

}

G
2

=
g

s
∃
x

2
,x

3
.(

x
1
7→

x
2
,x

3
)

∗
bt

(x
2
)
∗

bt
(x

3
)

{
=
G

3
\
{x

2
,x

3
}

=

        

{x
1
}

1 E
2

3

bt1

bt1

{n
il
}

2
2

        

F
ig

u
re

7.
2:

T
ra

n
sf

or
m

in
g

th
e

b
in

ar
y

tr
ee

p
re

d
ic

at
e

fr
om

E
x
am

p
le

6.
2

in
to

th
e

co
rr

es
p
on

d
in

g
h
y
p
er

ed
ge

re
p
la

ce
m

en
t
gr

am
m

ar
.

146

G3 = g[[(x1 7→ x2, x3) ∗ bt(x2) ∗ bt(x3)]] = G4 ⊲⊳ G5

G4 = g[[(x1 7→ x2, x3)]] =

{

{x1} 1 E 2
3

{x2}

{x3}

}

G5 = g[[bt(x2) ∗ bt(x3)]] = G6 ⊲⊳ G7 =







{x2}

bt

1

{x3}

bt

1

{nil}
2 2







G6 = g[[bt(x2)]] =
{

{x2} 1 bt 2 {nil}

}

G7 = g[[bt(x3)]] =
{

{x3} 1 bt 2 {nil}

}

Figure 7.3: Transforming the binary tree predicate from Example 6.2 into
the corresponding hyperedge replacement grammar (cont).

We first define our requirement for correctness. For the mapping to be

correct, if we map a separation logic formula to its corresponding grammar

using g and construct the language for the grammar, we get the same set

of graphs as if we construct the satisfying set of heaps, and mapped the

set of heaps to graphs using α. In other words, the mapping g must be

semantics-preserving.

Formally we say that the mapping g between separation logic formulas

and graph grammars is correct if for all formulas F ∈ SLF and heaps h,

h, i0, η0 |= F if and only if α(h) ∈ L(g[[F]]). This correctness requirement

can be visualised as the requirement that the following square commutes.

HGG Pow(HG)

SLF Pow(HE)

L(−)

|=

g[[−]] α(−)=

Our strategy for proving correctness is as follows:

1. We define the notion of a graph environment and define a correspon-

dence between graph environments and predicate interpretations (Def-

inition 7.7 and Definition 7.8).

147

2. We show that a let-free formula F evaluated in a given predicate in-

terpretation corresponds to the set of graphs h[[F]] evaluated in the

corresponding graph environment (Proposition 7.3 and Theorem 7.4).

3. We show that the predicate interpretation defined by a flat formula F

corresponds to the graph environment defined by the productions in

g[[F]] (Lemma 7.5).

4. We apply (2) and (3) to prove that g is correct (Theorem 7.6).

We have found in practice that plain sets productions (as defined in §2.3)

are unwieldy to reason about, especially when proving results about fixed-

points and let-formulas. Instead we define the notion of a graph environment

that records the set of terminal graphs for each non-terminal edge. We also

define a notion of evaluation in a graph environment, which substitutes all

non-terminal edges with some corresponding terminal graph.

Definition 7.6 (graph environment, graph evaluation2). Let N be a set

of non-terminal symbols. A graph environment L : N → Pow(HC) over N

maps each non-terminal symbol to a (possibly infinite) set of terminal graphs

with the same number of external nodes. A graph H is evaluated in a graph

environment L, denoted κ(L,H), by replacing all of the non-terminal edges

in H labelled σ ∈ dom(L) with some terminal graph r ∈ L(σ). This gives

the set of graphs

κ(L,H) =
{

H[repl : EN
H →HT] | repl(e) ∈ L(lE(e)) for e ∈ EN

H

}

.

Example 7.9 (graph environment, graph evaluation). The graph environ-

ment L maps the single nonterminal symbol X to two possible terminal

heap-graphs.

L(X) =



























1

2 3

1

2

,

1

2 3

2

1 3

1

2



























Let H be the following nonterminal graph.

2This definition of a graph environment is modified from the discussion of hyperedge
replacement and fixed-points in [27].

148

1

2

X

2

13

Evaluating H in environment L (written κ(L,H)) results in the following

pair of distinct terminal graphs.

1

23 1

2

3

2

1 3

1

23 1

2

3

We also define an alternative formulation for the productions of a graph

grammar, more suitable for use in fixed-point calculations. This definition

is taken from [38].

Definition 7.7 (equation system). Let H = 〈T,N,P,Z〉 be a hyperedge

replacement grammar. The equation system EQP associated with H is a

function EQP : N → Pow(HN∪T), defined as EQP (A) = {R | (A,R) ∈ P}.

We say that a graph environment L is the fixed-point of an equation

system if L(A) = κ(L,EQP (A)) for all symbols in A ∈ dom(EQP). If an

environment L is such a least fixed-point for a set of productions P , we say

that L is the environment defined by P .

Example 7.10 (equation system, least fixed-point). The following equation

system EQ assigns a pair of graphs to the nonterminal symbol X.

EQ(X) = { 1
2

3
X1 1 , 1

2

3 }

The fixed-point L for this equation system maps X to the infinite family

of graphs of the following form (as well as the small graphs of size 1, 2 etc.).

1
2

3
1

2

3

... 1
2

3

In [27], it is proved that the least fixed-point of the equation system

associated with H is the language family defined by H. That is, suppose we

have a grammar H = 〈T,N,P,Z〉. The language family defined for H is LH ,

and the language of H can be constructed by applying the language family

to the set of initial graphs, κ(LH , Z). Let EQP be the equation system

defined by P , and LP the least fixed-point of the equation system. Then

149

it must be true that LP = LH , and consequently κ(LP , Z) also defines the

language of H.

The consequence of this result is that we can use the fixed-point for a

grammar’s equation system to reason about the language defined by the

grammar. The semantics of a separation logic let-statement is defined in

terms of a least fixed-point, and we later show that formulas and grammars

correspond by showing that the fixed-point of a let-statement corresponds

to the fixed-point of a equation system.

Graph environments and predicate interpretations play the same role

in their respective domains: that of defining for a ‘symbol’ (either a non-

terminal or predicate) a class of structures for which the symbol can stand.

Both also define attachment points that are used to replace the non-terminal

in the structure with a corresponding terminal structure. It therefore makes

sense to define a notion of correspondence between them that holds when

the sets of structures for each symbol are the same, modulo α.

Definition 7.8 (correspondence). Let graph H be a heap-graph with n

external nodes. Let h be a heap and ~x = x1, . . . , xn be a sequence of

locations. We say that H corresponds to the pair (~x, h) if applying the

mapping function α(h) results in H and the heap-location xi is mapped to

the ith external node for i = 1 . . . n. A predicate interpretation η corresponds

to a graph environment L if: (1) dom(η) = dom(L). (2) For pair (~x, h) ∈

η(s) there exists a corresponding graph H ∈ L(s). (3) For every graph

H ∈ L(s) there exists a corresponding pair (~x, h) ∈ η(s).

Example 7.11 (correspondence). The following graph environment L just

maps the symbol X to a single terminal graph with two external nodes.

L = {X 7→ { 1
2

3
1

2

3
21 }}

The following predicate interpretation η corresponds to L.

η = {X 7→ {〈[l1, l3], {l1 7→ 〈l2, l2〉, l2 7→ 〈l3, l3〉}〉}}

In this correspondence location l1 corresponds to external node 1, and

location l3 corresponds to external node 2.

We now prove some subsidiary results needed for the main proof of cor-

rectness.

150

Lemma 7.1. Let L be a graph environment and G1, G2 and G3 be tagged

graphs. Then G3 ∈ κ(L,G1 ⊲⊳ G2) iff G3 ∈ κ(L,G1) ⊲⊳ κ(L,G2).

Proof. The tagged graphs G1 and G2 are joined by ⊲⊳ by merging nodes,

meaning that the new graph G1 ⊲⊳ G2 contains the same set of non-terminal

edges as the two original graphs. If we consider an individual node or edge

in G1 or G2 we can see that the same connections between nodes must be

constructable by either merging first and then applying the environment, or

the other way round.

Lemma 7.2 (decomposing heap-graphs). Let L be a graph environment,

and let G1 and G2 be sets of tagged heap-graphs. Let h be a heap and i a

variable interpretation. Heap-graph αt(h, i) is a member of set κ(L,G1) ⊲⊳

κ(L,G2) if and only if there exist heaps h0,h1 and interpretations i0,i1 such

that h = h0 · h1, and i = i0 ∪ i1, and αt(h0, i0) is a member of κ(L,G1) and

αt(h1, i1) is a member of κ(L,G2).

Proof. Assume that αt(h, i) is a member of κ(L,G1) ⊲⊳ κ(L,G2). By the

definition of ⊲⊳ we can pick graphs g0 ∈ G1 and g1 ∈ G2 such that αt(h, i) =

κ(L, g0) ⊲⊳ κ(L, g1). Each defined location in the heap must be mapped to

a node in either κ(L, g0) or κ(L, g1), or both. We must be therefore able

to construct heaps h0,h1 and interpretations i0,i1 by splitting h and i, such

that such that h = h0 · h1, and i = i0 ∪ i1, and αt(h0, i0) is a member of

κ(L,G1) and αt(h1, i1) is a member of κ(L,G2). The converse result follows

immediately from the definition of ⊲⊳ and α.

We now state a correspondence result for the mapping h over let-free

formulas. This result forms the basis of our correctness claim for let-free

formulas.

Proposition 7.3 (κ and let-free formulas). Let formula F ∈ SL be a let-free

separation-logic formula, and s a heap, i a variable interpretation and η a

predicate interpretation. Let L be a graph environment corresponding to η.

Then s, i, η |= F if and only if αt(s, i) ∈ κ(L, h[[F]]).

Proof. The proof proceeds by structural induction on the structure of for-

mula F . Note that the use of the mapping αt restricts these results to

the domain of heap-graphs. Later in the chapter we give a result for the

language defined by a grammar using the normalisation operator.

151

emp

Formula emp is satisfied by the empty heap, and h[[emp]] results in the empty

graph. Therefore trivially s, i, η |= emp if and only if αt(s, i) ∈ κ(L, h[[emp]]).

x 7→ V1, V2

We can see that s, i, η |= x 7→ V1, V2 if and only if αt(s, i) ∈ κ(L, h[[x 7→

V1, V2]]). After applying αt to s and i, we must have a graph with a single

terminal hyperedge and three nodes. The label unification ⇓ ensures that

vertices which are assigned the same logical variable are correctly merged.

Simple enumeration of all possible instances then shows that all cases are

correct.

σ(V1, . . . , Vn)

If: Assume s, i, η |= σ(V1, . . . , Vn). Therefore it must be true that the pair

(([[V1]]s, . . . , [[Vn]]s), h) is in η(σ). Then in the heap s and interpretation i,

V1 must point to the first value in [[V1]]i, and so on for V2 . . . Vn. By the

definition of h the singleton set h[[σ(V1, . . . , Vn)]] must consist of a graph

with only a single σ-labelled hyperedge. Let L be a graph environment that

corresponds to η. Then by the correspondence of η and L, it must be true

that αt(s, i) ∈ κ(L, h[[σ(V1, . . . , Vn)]]).

Only if: Assume αt(s, i) ∈ κ(L, h[[σ(V1, . . . , Vn)]]). By the same argument

used in the ‘if’ case, it must be true that s, i, η |= σ(V1, . . . , Vn).

P ∨ Q Consequence of the semantic equivalence between disjunction and

union.

P ∗ Q

If: Assume s, i, η |= P ∗Q. Therefore there must exist interpretations i0, i1

and heaps s0, s1 such that s0 · s1 = s and s0, i0, η |= P and s1, i1, η |= Q.

By the inductive assumption αt(s0, i0) ∈ κ(L, h[[P]]). The same holds for

h[[Q]]. Applying h[[P ∗ Q]] gives h[[P]] ⊲⊳ h[[Q]]. From Lemma 7.2 we know

that if αt(s0, i0) ∈ κ(L, h[[P]]) and αt(s1, i1) ∈ κ(L, h[[Q]]) and s0 · s1 is

defined, then αt(s0 · s1, i0 ∪ i1) ∈ κ(L, h[[P]]) ⊲⊳ κ(L, h[[Q]]). By Lemma 7.1,

αt(s0 · s1, i0 ∪ i1) ∈ κ(L, h[[P]] ⊲⊳ h[[Q]]).

Only if: Assume αt(s, i) ∈ κ(L, h[[P]] ⊲⊳ h[[Q]]) and αt(s, i) is a heap-graph.

From Lemma 7.1 and Lemma 7.2 we conclude there exist variable interpre-

tations i0, i1 and heaps s0, s1 such that αt(s, i) = αt(s0 · s1, i0 ∪ i1) and

152

αt(s0, i0) ∈ κ(L, h[[P]]) and αt(s1, i1) ∈ κ(L, h[[Q]]). By the inductive as-

sumption, we have s0, i0, η |= P and similarly s1, i1, η |= Q. We therefore

conclude that s0 · s1, i0 ∪ i1, η |= P ∗Q.

∃x. P Consequence of the semantic correspondence between variables and

tags in αt.

The normalisation operator ⌊−⌋ is applied to the result of g to ensure

that the class of graphs only includes heap-graphs. The result of Prop. 7.3

applies only to g applied in the presence of the evaluation function κ, but it

can be used to prove the correctness of g over let-free formulas.

Theorem 7.4 (correctness of g over let-free formulas). Let formula F ∈ SL

be a let-free separation logic formula, and let h be a heap. Then h, i0, η0 |=

F if and only if α(h) ∈ L(⌊g[[F]]⌋). Also for graph H with label alphabet

{E, nil}, if H ∈ L(⌊g[[F]]⌋) then H is a heap-graph.

Proof. All graphs in the language L(⌊g[[F]]⌋) must be heap-graphs by the

definition of the normalisation operator. Let 〈Z,P 〉 = ⌊g[[F]]⌋, and let L

be the graph environment defined by P . By the definition of a graph en-

vironment, we know that L(⌊g[[F]]⌋) = κ(L,Z). As F is let-free, by the

definition of g it must be true that P = ∅. Therefore L must be the empty

graph environment, where for all non-terminal symbols σ, L(σ) = ∅. This

means that L corresponds to the empty predicate interpretation η0. There-

fore, by the result of Proposition 7.3 and the correctness of normalisation,

h, i, η0 |= F if and only if αt(h, i) ∈ κ(L,Z), which holds if and only if

αt(h, i) ∈ L(⌊g[[F]]⌋).

We can extend this result further to prove the correctness of g for for-

mulas of the form let Γ in P , where both Γ and P are let-free. We begin

by proving a lemma showing that the predicate interpretation defined by

a let corresponds to the environment defined by the corresponding set of

productions constructed by g.

Recall that the semantics of let given in §6.1.3 makes use of the following

if and only if expression:

h, i, η |= let Γ in F iff h, i, η [β 7→ k(β)]β∈dom(Γ) |= F

where k = fix fη,Γ

153

As discussed previously, the new predicate interpretation η[β 7→ k(β)] is

defined over the symbols in dom(Γ) by the predicate interpretation k, which

is the least-fixed-point of the following function.

fη,Γ = λk0. λσ ∈ dom(Γ).

bind (σ(~x) = Q) to Γ(σ)

in {(~l, h) | h,
[

~x 7→ ~l
]

, η
[

β 7→ k0(β)
]

β∈dom(Γ)
|= Q}

We use this definition to state our lemma about the correspondence of

graph environments and predicate interpretations.

Lemma 7.5 (environmental correspondence for let). Let let Γ in F be a flat

formula. The least fixed-point of fη0,Γ corresponds to the graph environment

L defined by the set of rules r[[Γ]].

Proof. Let k be the least fixed-point of fη0,Γ. That is, k the least predicate

interpretation such that k = fη0,Γ(k, σ) for all symbols σ ∈ dom(Γ). As

stated earlier in the section, a graph environment L is defined by a set of

rules P if L is the least environment satisfying L(σ) = κ(L,EQΓ(σ)) for any

symbol σ ∈ dom(EQΓ), where EQΓ is the equation system defined by P .

Let ki be a predicate interpretation, and Li be a corresponding graph

environment. Now let kj(σ) = fη0,Γ(ki, σ), and let Lj(σ) = κ(Li, EQΓ(σ))

for all σ ∈ dom(Γ). To show our result we need to show that kj corresponds

to Lj.

Let us look at the definitions of these two functions for a particular

symbol σ. First consider kj , which is defined by instantiating the defini-

tion of the fixed-point function. In the following equation, the expression

η
[

β 7→ ki(β)
]

β∈dom(Γ)
is replaced by ki because the surrounding predicate

interpretation is η0.

kj(σ) = bind (σ(~x) = Q) to Γ(σ)

in {~v, h) | (h, [~x 7→ ~v], ki |= Q}

The graph environment Lj is defined by the following application of

κ(Li,−), taken from the definition of a graph environment.

Lj(σ) = κ(L,EQΓ(σ))

From the result of Proposition 7.3, we know that a heap s, variable

interpretation i and predicate interpretation η satisfy the formula Q if and

154

only if the graph αt(s, i) is a member of the class of graphs κ(L, h[[Q]]),

where L is a graph environment corresponding to η.

We now have to show that a pair (~v, h) is a result of the function if and

only if the corresponding graph G is a member of the set of graphs con-

structed from g[[Q]]. A pair (~v, h) is a member of the set if ([~x 7→ ~v], h), ki |=

Q. By Prop 7.3, this set of pairs corresponds to the set of graphs g′ such

that there exists a g ∈ κ(Li, Q) where var(g) = ~x, nil and g is exposed to

g′ with {~x, nil}. This set of graphs is equal to the set of graphs defined by

applying κ(L,−) to the right-hand sides in EQΓ(σ). Consequently the set

of pairs in kj(σ) corresponds to the set of graphs in Lj(σ).

As a result, any predicate interpretation k that is a fixed point of the

function fη0,Γ must correspond to an environment L that is a fixed-point of

κ applied to the equations in EQΓ. The correspondence between predicate

interpretation and graph environments is monotone (that is, if k1 ≤ k2 and

k1 corresponds to L1 and k2 corresponds to L2 then L1 ≤ L2, and vice

versa), so the least fixed-point k0 corresponds to the least fixed-point L0.

This proves our result.

We now use this lemma to prove that g is correct when applied to a

let-formula with let-free sub-arguments.

Theorem 7.6. Let formula F ′ = let Γ in F be a flat separation logic for-

mula. Let h be a heap. Then h, i0, η0 |= F ′ if and only if α(h) ∈ L(g[[F ′]]).

Proof. A heap h, variable interpretation i and predicate interpretation η sat-

isfies the formula if the heap satisfies formula F ′ in predicate interpretation

ηk, formed by redefining η(σ) to k(σ) for all σ ∈ dom(k). We have shown in

lemma 7.5 that the k defined by the forcing relation from Γ in environment

η0 must correspond to the graph environment L defined by the set of rules

r[[Γ]]. In the case of formula F ′ we have that η = η0, so ηk = k.

Because F is let-free, we know that in the pair 〈ZF , PΓ〉 = g[[F ′]], PΓ = ∅.

Because F is let-free, we know that in the pair 〈Z ′, PF 〉 = g[[F]], PF = ∅ and

Z ′ = ZF . So a graph is in L(g[[F]]) if and only if it is in κ(L,ZF).

We have shown in Proposition 7.3 that for any let-free formula K and

pair 〈Z,P 〉 = g[[K]], and corresponding predicate interpretation η and graph

environment L, h, i, η |= K if and only if αt(h, i) ∈ κ(L,Z).

Applying these results gives us the following logical expression that holds

for any heap h.

155

h, i0, η0 |= F ′ ⇐⇒ h, i0, k |= P (semantics of let)

⇐⇒ α(h) ∈ κ(L,ZF ′) (equivalence of k and L)

⇐⇒ α(h) ∈ L(g[[F ′]]) (P is let-free)

This completes the proof.

We have only proved this result for the class of flat formulas in our frag-

ment of separation logic. However, we have shown in §6.2 that any formula

in our fragment can be transformed into a corresponding flat formula, so by

composing the flattening function flat with g we can construct the mapping

g ◦flat from any formula in the fragment to a semantically equivalent graph

grammar.

7.4 Mapping from grammars to formulas

We now define the function s : HRH → SLF , which maps a pair 〈Z,P 〉

consisting of a set of initial graphs Z and set of productions P to a recursive

let-statement let ΓP in FZ . The definition of s is given in Figure 7.4.

The definition of s uses the subsidiary functions sq, sG, sg and se, which

operate over productions, sets of graphs, graphs and edges respectively. s

calls sq to construct the predicate definitions ΓP and sG to construct the

let-body FZ .

The mapping needs to associate each node with a particular variable

name (or nil). To do this, we assume that every initial graph and pro-

duction right-hand side G in an input grammar has been replaced with a

corresponding well-tagged graph 〈G, tG〉. For each graph G, we assume that

tG is an arbitrary but fixed injective tagging function satisfying the following

formula. Here n is the number of external nodes in G.

t(v) =



















{xi} if v ∈ extG and posG(v) = i.

{nil} if the nil-edge is attached to v.

{r} s.t. r ∈ V ar \ {x1 . . . xn, nil} otherwise.

The tagging function associates internal nodes with arbitrary variable

names, while the ith external node of a graph is given the fixed tag ‘xi’.

The nil node is tagged with nil.

156

s[[〈Z,P 〉]]
def
= let sq[[EQP]] in sG[[Z]]

sG[[{g1, . . . , gm}]]
def
= sg[[g1]] ∨ . . . ∨ sg[[gm]]

sg[[〈g, t〉]]
def
= ∃y1 . . . ∃ym. se[[e1, t]] ∗ . . . ∗ se[[en, t]] ∗ emp

where
{e1, . . . , en} = {e ∈ Eg | l(e) 6= nil}
{y1, . . . , ym} = {t(v) | v ∈ Vg ∧ v /∈ extg ∧ t(v) 6= nil}

se[[e, t]]
def
=











































t(v) 7→ t(v0), t(v1)

where att(e) = (v, v0, v1)
if lE(e) = E

σ(t(v1), . . . , t(vn))

where σ = lE(e)

att(e) = (v1, . . . , vn)

if lE(e) ∈ N

sq[[EQP]]
def
= σ(x1, . . . , xn, nil) = sG[[EQP (σ)]], sq[[EQP \ σ]]

where n = ari(σ)

Figure 7.4: Mapping from heap-graph grammars to separation logic formu-
las.

The function sG maps a set of tagged heap-graphs to a disjunction of

formulas, each of which correspond to a single graph. These single graphs

are constructed by the function sg, which takes as its input a tagged graph

and constructs a separating conjunction, with each conjunct corresponding

to a single graph edge. The conjunction for a graph is wrapped in existential

quantifications that quantify out variables corresponding to internal nodes.

Individual conjuncts for a graph are constructed by the function se. Ter-

minally labelled E-edges result in points-to assertions, while non-terminal

edges result in calls to recursively-defined predicates. The arguments to

point-to assertions and predicate calls are recovered from the tagging func-

tion.

The function sq takes the equation system EQP corresponding to a set

157

of productions P (see Def. 7.7). It constructs the predicate definitions

for a let-statement. An equation system is used rather than the original

set of productions because sq needs to recover all the right-hand sides for a

single nonterminal symbol, something that is easier to specify in an equation

system.

sq constructs a single recursive definition for each nonterminal symbol

in P . The set of right-hand side graphs for a single symbol are mapped

to a right-hand side formula, using the function sG for sets of graphs. The

arguments to the predicate are given x1, . . . , xn, which by the definition of

the tagging function form the free variables of the right-hand side formula.

Figure 7.5 shows the derivation of a separation-logic formula from the

binary tree predicate given in Example 7.1. We omit the tagging function,

as the mappings from nodes to variables should be obvious. As with Figure

7.2, to fit the example on the page, arrows are used to indicate the values

of some intermediate variables.

This example shows the derivation of individual elements in the for-

mula. sg constructs the let-statement body ∃x. bt(x, nil) from the single

initial graph. For the right-hand side of the definition of bt, sq constructs

the two disjuncts ∃y1, y2. x1 7→ y1, y2∗bt(y1, x2)∗bt(y2, x2) and (x1 7→ x2, x2)

from the two production right-hand sides. The derivation shows these ele-

ments being glued together to form the final formula, which is identical to

the one in example 6.2 (modulo bound variable renaming).

7.5 Proving the correctness of mapping s

In this section we prove that the mapping s, as defined in the previous

section, is correct. For s to be correct, it must be true that for all hyperedge-

replacement grammars H = 〈T,N,P,Z〉 and heap-graph G, G ∈ L(H) if

and only if α−1(G), i0, η0 |= s[[〈Z,P 〉]]. This can be visualised as a the

requirement that the following square commutes:

HGG Pow(HG)

SL Pow(HE)

L(−)

|=

s[[−]] α−1(−)=

158

s

u w w w v

    

1 bt 2

n
il

1

,
bt
⇒

1
1 E

2
3

bt1
bt1

2
2

2

1
1

bt 2
3 2

    

} � � � ~
=

le
t
Γ

in
F

=
le

t
bt

(x
1
)

=
(x

1
7→

n
il
,n

il
)
∨

(∃
x

2
,x

3
.(

x
1
7→

x
2
,x

3
)
∗

bt
(x

2
)
∗

bt
(x

3
))

in
∃
x
.b

t(
x
)

w
h
er

e:

F
=

s g

r
1

bt
2

n
il

1

z
=
∃
x
.b

t(
x
,n

il
)

Γ
=

s q

u w w w v
bt
⇒

1
1 E

2
3

bt1
bt1

2
2

2

1
1

bt 2
3 2

} � � � ~
=

bt
(x

1
,x

2
)
=

s G

u w w w v

1
1 E

2
3

bt1
bt1

2
2

2

,
1

1

bt 2
3 2

} � � � ~
=

F
1
∨

F
2

F
1

=
s g

r
1

1
E

2 3
2

z
=

(x
1
7→

x
2
,x

2
)

F
2

=
s g

u w w w v

1
1 E

2
3

bt1
bt1

2
2

2

} � � � ~
=
∃
y 1

,y
2
.x

1
7→

y 1
,y

2
∗

bt
(y

1
,x

2
)
∗

bt
(y

2
,x

2
)

F
ig

u
re

7.
5:

T
ra

n
sf

or
m

in
g

th
e

b
in

ar
y

tr
ee

gr
am

m
ar

fr
om

E
x
am

p
le

7.
1

in
to

a
co

rr
es

p
on

d
in

g
se

p
ar

at
io

n
lo

gi
c

fo
rm

u
la

.

159

We prove our correctness result incrementally beginning with single

graphs, moving to sets of graphs, and then finally proving the result for

full grammars. Because the non-terminal symbols and predicates must be

modelled in the proof of correctness, our results are proved with the addi-

tion of graph environments and corresponding predicate interpretations (see

Definition 7.8).

We first prove that s is correct for single graphs (Lemma 7.7), then sets

of graphs (Lemma 7.8). We then apply this result to prove that the let-

formula defined by s from a grammar H defines a predicate interpretation

corresponding to the graph environment defined by H (Lemma 7.9). Finally

we apply the previous results to prove the overall correctness of g (Theorem

7.10).

In the following we use the function α−1
t (Def. 6.10) to map from a tagged

heap-graph g to a pair (h, i) consisting of a heap h and a variable interpre-

tation i. To shorten proofs involving α−1
t , we sometimes write (h, i), η |= F

to stand for h, i, η |= F .

Lemma 7.7. Let G and H be tagged heap-graphs with n external nodes. Let

L be a graph environment and η a predicate interpretation corresponding to

L. Then H ∈ κ(L,G) if and only if h, i′, η |= sg[[G]], where (h, i) = α−1
t (H)

and i′ is i restricted to the domain {x1, . . . , xn}.

Proof. We first show for graphs G and H where all nodes are external that

H ∈ κ(L,G) if and only if α−1
t (H), η |= sg[[G]]. The proof works by induction

on the number of hyperedges in the graph G.

In the base case there is only a single hyperedge in the graph. There are

two possible cases for a heap-graph G1 containing a single hyperedge: either

the hyperedge can be an E-labelled terminal hyperedge or a nonterminal

hyperedge with some label σ.

If the graph G1 contains a terminal edge, then κ(L,−) performs no

substitution and so H ∈ κ(L,G) if H = G. The resulting expression sg[[G1]]

consists of x1 7→ x2, x3. By the semantics of α−1
t , α−1

t (H), η |= sg[[G]].

If the graph consists of a non-terminal edge labelled σ, then the result-

ing expression sg[[G1]] will consist of some predicate σ(x1, . . . , xn, nil). By

assumption, the environments η and L correspond. Therefore κ(L,−) must

replace the σ-labelled hyperedge with a heap subgraph corresponding to one

of the heaps in η(σ). As a result, the heap α−1
t (H), η |= sg[[G]].

160

Now consider an arbitrary heap-graph Gn with n hyperedges. Gn can be

decomposed into two smaller tagged graphs G′ and G′′ such that Gn = G′ ⊲⊳

G′′. By the inductive hypothesis, H ′ ∈ κ(L,G′) iff α−1
t (H), η |= sg[[G

′]], and

the same for G′′.

We have shown in Lemma 7.1 that κ distributes over ⊲⊳, so κ(L,Gn) =

κ(L,G′ ⊲⊳ G′′) = κ(L,G′) ⊲⊳ κ(L,G′′). Because the two graphs are fully-

labelled, H ′ and H ′′ must result in pairs of heaps and variable interpretations

α−1
t (H ′) and α−1

t (H ′′) where the heaps have disjoint domains. separating

conjunction is both associative and commutative so the formula sg[[G]] can

be rewritten in the form sg[[G
′]]∗sg[[G

′′]]. By the semantics of conjunction, a

state satisfies P ∗Q if it can be decomposed into two disjoint states satisfying

P and Q. By the inductive assumption, this holds, so α−1
t (H) ∈ sg[[G]].

We now want to extend this result to graphs with internal nodes. We

extend it by incrementally removing external nodes. Proof proceeds by

induction over the number of internal nodes in the graph.

By the semantics of existential quantification, removing a node from the

sequence of external nodes results in the existential quantification of the cor-

responding variable name. The order of node removal is immaterial because

existential quantification is commutative. Any graph can be constructed by

removing external nodes, so this completes the proof.

This lemma for single graphs is now extended to sets of graphs, which

are used to form the initial element of the grammar and form the basis of

production definitions.

Lemma 7.8. Let G be a set of heap-graphs and H a single heap-graph. Let L

be a graph environment and η a corresponding separation logic environment.

Then H ∈ κ(L,G) if and only if α−1
t (H), η |= s[[G]].

Proof. First assume that H ∈ κ(L,G). There must be some graph G′ ∈ G

such that H ∈ κ(L,G′). By application of Lemma 7.7, α−1
t (H) |= s[[G′]]. As

s[[G′]] must be an argument of the disjunction s[[G]] we conclude α−1
t (H) |=

s[[G]].

Now assume that h, i, η |= s[[G]] (as αt is bijective, we can use a pair h and

i in place of the corresponding heap-graph). Formula s[[G]] is a disjunction

consisting of arguments s[[G′′]] constructed from graphs G′′ ∈ G. Therefore

h, i, η must satisfy at least one such argument, so we assume that h, i, η |=

161

s[[G′′]]. By application of Lemma 7.7, αt(h, i) ∈ G′′, and G′′ ∈ G, which

proves our result.

As with the proof of correctness for g, we need to prove that the graph

environment defined by a rule set is the same as the one defined by the

separation-logic semantics for let.

Lemma 7.9. Let H = 〈T,N,P,Z〉 be a heap-graph grammar, and let s[[〈Z,P 〉]] =

let Γ in F be the resulting separation-logic formula. Then the graph environ-

ment defined by P corresponds to the environment k defined by the semantics

of satisfaction when evaluating the formula in environment η0.

Proof. This proof uses much the same approach as the proof of Lemma 7.5

and so we give only sketch rather than the full details of the proof. We

observe that both environments are defined as the fixed-point of a function

over environments, and show that, if we begin with a corresponding pair of

environments, the two functions always construct a pair of environments.

This suffices to show that the two least fixed-points are the same, which

proves our result.

To prove that the two functions over environments produce correspond-

ing environments when passed corresponding environments, we use the re-

sult of Lemma 7.8. As in the earlier proof, we show that the correctness

result for graph sets carries through to a correspondence between resulting

functions.

We now apply Lemma 7.7, Lemma 7.8 and Lemma 7.9 to prove the

correctness of the mapping s from grammars to formulas.

Theorem 7.10. Let H = 〈T,N,P,Z〉 be a heap-graph grammar. Let G ∈

HC be a graph. Then G ∈ L(H) if and only if α−1(G), η0 |= s[[〈Z,P 〉]].

Proof. By the semantics, α−1
t (G), η0 |= s[[〈Z,P 〉]] if and only if α−1

t (G), k |=

sH [[Z]], where k is defined by a fixed-point function based on η0 and sq[[P]].

We have shown in Lemma 7.9 that this environment k must correspond to

the graph environment defined by P .

A graph G is a member of 〈Z,P 〉 if and only if it is a member of κ(L,Z),

where L is the graph environment defined by P . We concluded in Lemma

7.8 that, given corresponding environments k and L, then G ∈ κ(L,Z)

if and only if α−1
t (G) |= sH [[P]]. We have shown that the environments

162

k and L must correspond, so we conclude that G ∈ L(H) if and only if

α−1
t (G), η∅ |= s[[〈Z,P 〉]].

Note that Theorem 7.10 proves a full correctness result for s, rather than

correctness over a restricted domain of flattened formulas as with our results

for g. This difference is due to the fact that there is no nesting of recur-

sive definitions in the definition of hyperedge replacement grammars, which

makes a full proof considerably simpler than for separation-logic formulas.

163

Chapter 8

Consequences and

limitations

In this chapter we examine some of the consequences of our translation

from separation logic formulas into hyperedge replacement grammars, and

vice versa. We examine both the theoretical and practical reasons that

our correspondence is interesting. We also look at the limitations of our

approach, some of which can be overcome by further work, and some of

which are theoretical limits that cannot be overcome without changing our

basic approach.

The chapter is structured as follows. In section 8.1 we examine the

separation-logic semantics of some of the constructs not present in our frag-

ment, and prove that formulas featuring these constructs cannot be modelled

in general by a hyperedge-replacement grammar. In §8.2 we consider an ex-

tension of the heap-model permitting tuples, rather than pairs. In §8.3 we

describe the consequences of the correspondence for both separation logic

and hyperedge replacement. Finally, in §8.4 we consider some of the related

work on separation logic, grammars, and expressiveness.

8.1 Inexpressible separation logic operators

The fragment of separation logic we have chosen has been restricted so that

it is expressible by hyperedge replacement grammars. We claim in §6.1 that

the omitted constructs are fundamentally non-context-free. In this section

we justify this claim.

164

h, i, η |= true holds always

h, i, η |= P ∧Q iff h, i, η |= P and h, i, η |= Q

h, i, η |= ¬P iff h, i, η 6|= P

h, i, η |= P −∗ Q iff ∀h′. if h′#h and h, i, η |= P
then (h′ · h), i, η |= Q

Figure 8.1: Definition of satisfaction for separation logic operators not
present in our fragment.

To do this, we extend our semantics for satisfaction to include separation

logic operators not present in our initial fragment. The extended semantics

is defined in Figure 8.1. As with our basic semantics for satisfaction, this

definition is based heavily on [74, 52].

8.1.1 Conjunction

Conjunction is omitted from our fragment because it corresponds to lan-

guage intersection, and the class of HR-definable languages of heap-graphs

is not closed under intersection. A conjunction P ∧ Q is satisfied by any

heap h satisfying both P and Q. Suppose that P and Q correspond in our

mappings to grammars g[[P]] and g[[Q]]. Then the grammar g[[P ∧Q]] should

construct the set L(g[[P]]) ∩ L(g[[Q]]).

It is shown in [39] that the class of hyperedge-replacement languages

is not closed under intersection. The proof of this works by defining the

following pair of string languages:

L1 : {an1bn1an2bn2 . . . bnk−1ankbnk | k ≥ 1 ∧ n1 . . . nk ≥ 1}

L2 : {an1bn2an2bn3 . . . bnkankbnk+1 | k ≥ 1 ∧ n1 . . . nk+1 ≥ 1}

These definitions use the normal notation for strings, so the string anbm

consists of n ‘a’ characters followed by m ‘b’ characters. L1 and L2 are used

to define languages of string-graphs.

Definition 8.1 (string-graph). The graph w• is the string-graph corre-

sponding to string w. A string-graph for string w = c1c2 . . . cn consists of

n + 1 unlabelled nodes v1, . . . , vn+1 and n labelled edges such that edge ei

has source vi and target vi+1 and label ci. The graph language L• is the

language of string-graphs {w• | w ∈ L}.

165

Example 8.1 (string-graph). For the string ‘abaab’, the corresponding

string-graph (abaab)• is as follows.

a b a a b

L1 and L2 are used to define the HR languages L•
1 and L•

2. The inter-

section between L•
1 and L•

2 gives the following language:

L•
1 ∩ L•

2 = {((anbn)k)• | k ≥ 1 ∧ n ≥ 1}

In [27] it is shown by application of the pumping lemma for hyperedge

replacement languages that L•
1∩L•

2 is HR-inexpressible. However, this proof

applies to the class of unrestricted HR languages. To show that intersection

is not possible in the restricted domain of heap-graph languages we must

alter the proof.

First we define a new encoding. Rather than using edge-labels to record

character names, we use configurations of edges. Our string encoding is

defined over characters ‘a’ and ‘b’ only.

Definition 8.2 (string heap-graph). The graph w◦ is the string heap-graph

corresponding to string w. A string heap-graph for string w = c1c2 . . . cn con-

sists of n+1 unlabelled nodes v1 . . . vn+1 and n E-labelled edges e1 . . . en. If

character cn is an ‘a’, then the edge E has attachment points [vn, vn+1, vn+1].

If cn is a ‘b’ then the edge has attachment points [vn, vn+1, vn]. The graph

language L◦ is the language {w◦ | w ∈ L}.

Example 8.2 (string heap-graph). For the string ‘abaab’, the corresponding

string heap-graph (abaab)◦ is as follows.

1 E

a

2
3 1

3
E

b

2 1 E

a

2
3

1 E

a

2
3 1

3
E

b

2 1 nil

Let H1 and H2 be HR grammars defining L◦
1 and L◦

2 respectively. Ap-

plying our translation function s allows us to construct formulas P1 = s[[H1]]

and P2 = s[[H2]].

Now suppose we include conjunction in our fragment of separation logic.

The set of heaps satisfying the formula P1∧P2 would correspond to the class

of heap graphs {((anbn)k)◦ | k ≥ 1∧n ≥ 1}. But by the same argument used

in the original proof, this language is not expressible by any HR grammar.

Therefore grammar g[[P1 ∧ P2]] cannot be constructed, and so conjunction

cannot be modelled using hyperedge replacement.

166

8.1.2 Negation

Negation is prohibited in our fragment because it corresponds to language

complement, and the class of HR languages of heap-graphs is not closed un-

der complement. We use this fact to prove that complement is inexpressible.

We write LC to denote the complement of a language L.

Proposition 8.1. The class of of HR heap-graph languages is not closed

under complement.

Proof. We have shown in the previous section that the class LHR of HR-

expressible heap-graph languages is not closed under intersection. It is

known that the class LHR is closed under union. The union of two grammars

can be constructed by simply merging their respective sets of initial graphs

and sets of productions by disjoint union.

Suppose now that LHR is closed under complement. For languages A

and B, by De Morgan’s laws, (AC ∪ BC)C = A ∩ B, so if LHR is closed

under complement, it implies that it is closed under intersection, which is

false. Therefore, the class is not closed under complement.

This result means that we cannot express separation-logic negation in

a hyperedge-replacement grammar. By Proposition 8.1 there must exist a

heap-graph grammar G such that the complement of its language is not HR-

expressible. We construct the corresponding separation-logic formula s[[G]].

If we apply the negation operator, to give formula ¬s[[G]], then by the se-

mantics of negation, the grammar g[[¬s[[G]]]] must generate the complement

of L(G). But L(G)C is HR-inexpressible, so no grammar g[[¬s[[G]]]] can be

defined.

8.1.3 The elementary formula true

In [38], Chapter IV, it is shown that any HR language of simple graphs

(meaning graphs without loops or parallel edges) must have a maximum

bound on the size of any clique in the language. Heap-graphs cannot contain

parallel edges, so the class of all loop-free heap-graphs is such a language

of simple graphs. Consequently the set of loop-free heap graphs cannot be

expressed by any hyperedge-replacement grammar.

The formula true is satisfied by any heap h. Suppose that we can

construct a corresponding grammar G = g[[true]]. This grammar would have

167

to construct the language of all possible heap-graphs. The loop-free property

is a compatible property in the sense of [27]. This is because the loop-free

property for a graph can be composed from the pairwise reachability of the

external nodes of the graph’s constituent subgraphs. Consequently we can

construct grammar G′ that defines the language of loop-free heap-graphs. No

such grammar exists. Therefore no such grammar g[[true]] can be defined.

8.1.4 Separating implication

The separating implication operator−∗ is the separating equivalent of normal

implication. A heap satisfies formula P −∗ Q if joining it with a heap

satisfying P results in a heap satisfying Q.

Conjecture 8.2. For any DPO graph grammar G defining a language of

heap-graphs, there exists a corresponding separation-logic formula F in SL+

{−∗} such that g ∈ L(G) iff α(g) |= F .

This conjecture rests on the observation that the ‘holes’ constructed by

separating implication can be seen as corresponding to the context matched

by the left-hand of a DPO rewrite rule.

Suppose that we have a context-sensitive rule 〈L ← K → R〉. Let L,

R and K be heap-graphs. We have shown in §7.4 that we can construct a

formula from any terminal heap-graph by applying the function sg. Let FL

be a formula corresponding to the left-hand side and FR a formula corre-

sponding to the right-hand side. We use the interface graph K to ensure

that nodes shared between the left and right-hand sides share free variable

names in FL and FR.

Suppose we have a formula FH describing the starting heap-graph H.

Now we write the following formula representing the rule.

(FL −∗ FH) ∗ FR

This formula is satisfied by a heap satisfied by FH which has had a

subheap satisfying FL removed and a subheap satisfying FR added.

Example 8.3 (simulating DPO rules). Suppose we have the following DPO

rule.

1
2

3
21 ⇒ 1

2

3
1

2

3
21

168

Then the corresponding formula is as follows, given a formula FH that

is a description of the starting graph H.

∃x, y. (((x 7→ y, y) −∗ FH) ∗ ∃z. (x 7→ z, z ∗ z 7→ y, y))

The shared variables x and y take the place of the interface nodes be-

tween the left and right-hand graphs.

If true, this conjecture would also suffice to show that separating im-

plication is not expressible by any hyperedge-replacement grammar. This

is because languages are known to exist (such as the language of balanced

binary trees or the set of all (hyper)graphs) that can be expressed by a

double-pushout-based grammar but that are not HR-expressible.

8.2 Extending the heap model

To simplify both the translations and our proofs of correctness, in previous

chapters we have used a pair-based heap model (see §6.1). At the cost of

more complexity, we can extend this model to a more expressive heap model

where locations can map to tuples of arbitrary size. In this section we sketch

the extended model and describe the extension it permits to our fragment

of separation logic and notion of a heap-graph grammar.

To control the size of the tuples in the heap, locations in the heap must

be typed. This extension requires that we define syntactically new points-

to assertions for each location type. We also must extend the set of labels

permitted in a heap-graph to record the new types.

We assume a finite set Typ of types. Then we define a tuple-heap as

follows:

Definition 8.3 (tuple-heap). A tuple-heap j = 〈h, t〉 consists of a heap

function h : Loc → Elem∗ ∪ {�}, a partial function with finite domain

mapping each location to a tuple of elements or �, and a typing function

t : Loc→ Typ, a partial function mapping locations to types.

Definition 8.4 (tuple-type schema). A tuple-type schema s : Typ → Z is

a total function mapping types to integers. We say that a tuple-heap 〈h, t〉

is well-formed with respect to s if dom(s) = ran(t) and for every location

l ∈ dom(h), s(t(l)) = |h(l)|. In a well-formed tuple-heap, the type-schema

gives each type T an integer size n, and every tuple stored at a location with

type T is of size n.

169

Example 8.4 (tuple-heap, tuple-type schema). Suppose we have set of

types {X,Y,Z} and a tuple-type schema s defined as follows.

s = {X 7→ 3, Y 7→ 1, Z 7→ 2}

Of the following tuple-heaps, h1 is well-formed, but h2 is not well-formed

because location l2 has an arity of 3 but a type of Y , where s(Y) = 1.

h1 = 〈{l1 7→ 〈l2, nil〉, l2 7→ 〈l1〉}, {l1 7→ Z, l2 7→ Y }〉

h2 = 〈{l1 7→ 〈l2, nil〉, l2 7→ 〈l1, nil, l2〉}, {l1 7→ Z, l2 7→ Y }〉

For a given type-schema s we can define a fragment of separation logic

specifying well-formed tuple-heaps. For each type T ∈ Typ we define a

distinct points-to assertion x
T
7−→ y1, . . . , yn, where n = s(T). Such a points-

to assertions states that the tuple associated with location x is 〈y1, . . . , yn〉.

We also define a notion of a heap-graph over s. This is defined in largely

the same way as a normal heap-graph (see Definition 6.9). The main alter-

ation is that the set of labels for such a graph is Typ ∪ {nil}, and the arity

of a terminal symbol T ∈ Typ is defined as ari(T) = s(T) + 1. The arity

of nil remains 1. A heap-graph grammar over s is defined as a grammar

producing heap-graphs over s.

Once we have defined such an extension of the semantics, we can redefine

our mappings between domains. Our intuitive correspondence is as before,

but points-to assertions of type T now correspond to terminal edges with

label T . Other elements of the mapping are unchanged. This is because the

other constructs of separation logic and hyperedge replacement interact in

the same way with the tuple-model as with the cons-model.

The tuple-model of separation logic includes the model given in the pre-

vious chapter as a special case. Such a model of separation logic corresponds

more closely to C-like pointer structures, where each location corresponding

to a structure with a fixed number of fields. The corresponding heap-graphs

also correspond more closely to a general notion of hyperedge replacement,

with the restriction on terminal labels removed.

It will be the subject of future work to modify the functions and proofs

given in the previous chapter to match with this extended model. The proofs

of correctness for such a mapping will be more complex, as the notion of a

type introduces more cases to the mapping, but we do not expect that they

will be conceptually more difficult.

170

8.3 Consequences of the correspondence

In this section we describe some of the consequences of the correspondence

between our separation-logic fragment and heap-graph grammars. We look

both at the theoretical consequences of the correspondence, in providing

properties that can be imported between domains, and the practical useful-

ness of our fragment of separation logic.

First, let us define the meaning of the correspondence we have defined

between these two domains. We have defined a bijective mapping between

the domains of heap-graphs and heaps, and we have shown that the map-

pings g[[−]] and s[[−]] are correct with respect to this mapping. This means

that formulas in our fragment and heap-graph grammars can be used inter-

changeably as methods for defining classes of structures.

Theorem 8.3 (equivalent expressive power). Any class of structures sat-

isfying a formula in SL can be generated by some heap-graph grammar,

modulo α, and vice versa.

Proof. Function s is defined as a total function. The composition flat ◦ g of

the flattening formula flat and g is total over formulas in SL. The result

follows as a consequence of the correctness of flattening (Corollary 6.5) and

of the correctness of g and s (Theorem 7.6 and Theorem 7.10).

This proves that s is a semantic inverse to g. For heap h and heap-graph

g, h, i0, η0 |= s[[g[[F]]]] ⇐⇒ h, i0, η0 |= F , and g ∈ L(g[[s[[G]]]]) ⇐⇒ g ∈

L(G). In other words, s and g define a correspondence between the domains

of separation logic and hyperedge replacement. This is the major result of

our work on separation logic and hyperedge replacement.

However, s is not syntactically the inverse of g, even if we discount

variable naming and trivial formula reordering. This is because the source

normalisation operator (see §6.4) removes information when normalising to

a heap-graph grammar. To see this, consider the example given in §6.4. We

have a formula

let f(z1, z2) = ((z1 7→ z2, nil) ∨ (z2 7→ z1, nil)) in ∃x, y. f(x, y) ∗ f(x, y).

Applying g to formula results in a non-heap-graph grammar, which we

then normalise to the following grammar.

171

Z =

f1 f2

1 1

2 2

3 3

1

nil

f1 ⇒ E

1

1

22

3

3

f2 ⇒ E

1

2

21

3

3

But this is the same grammar that results from applying g to the fol-

lowing formula.

let f1(z1, z2) = (z1 7→ z2, nil), f2(z1, z2) = (z2 7→ z1, nil)

in ∃x, y. f1(x, y) ∗ f2(x, y).

Consequently g is non-bijective, so s cannot be its inverse.

However, this problem does not occur if we consider only formulas in the

range of s. This is because formulas constructed by s are already source-

normalised. We call this class of formulas SLF ′. Aside from source nor-

malisation and variable renaming, corresponding formulas and grammars

are structurally very similar. Consequently we conjecture that g : SLF ′ →

HGG, the function g restricted to the range of s, is the inverse of s.

8.3.1 Making use of theoretical results

An immediate consequence of this result is that some of the theoretical

results that have been proved for hyperedge-replacement grammars hold for

formulas in the fragment.

The most obvious of these are the results about inexpressible languages.

If a language of graphs is proved to be inexpressible by any hyperedge re-

placement grammar, then the corresponding class of heaps must also be

undefinable in our fragment.

Examples of known results include the facts that both the languages

of grid graphs, balanced binary trees are inexpressible by any hyperedge re-

placement grammar (consequences of the pumping lemma and linear-growth

theorem of [38] respectively) as is the language of all heap-graphs (conse-

quence of the clique-size limit discussed in §8.1.3).

The most flexible result for proving inexpressibility results is the pump-

ing lemma for hyperedge-replacement languages (already mentioned in §8.1.1).

172

The interested reader is directed to [38] for an extended discussion of the

inexpressibility results that follow from the pumping lemma.

We have already made use of several expressibility results in defining

our mappings. For example, the class of hyperedge replacement expressible

languages is closed under intersection with so-called compatible properties.

We used the fact that heap-graph conformance is a compatible property in

§7.2 to show that we can define a heap-graph normalisation operator. This

result holds for any formula in our fragment. So for any formula in SL,

a new formula can be constructed expressing the intersection between the

formula and a compatible property.

8.3.2 Relationship with symbolic heaps

Our approach is related to other work in the composition of our fragment

SL. This fragment might appear at first to be quite restrictive. However,

it is actually quite close to the symbolic heaps that form the basis of the

Space Invader tool [5, 79] (see §11.3 for more on Space Invader). Loosely

speaking, symbolic heaps are a fragment of separation logic that has been

developed for symbolic execution.

The exact fragment of separation logic used varies with the paper cited.

However, a symbolic heap Π | Σ as defined in [20] consists of a finite set Π

of equalities and a finite set Σ of heap predicates. The equalities E = F are

between expressions E and F , which are variables x or primed variables x′

or nil. The elements of Σ are of the form E 7→ F , ls(E,F), and junk. ls(x, y)

stands for a recursively-defined list segment, while junk can stand for any

heap.

Π is referred to as the pure part of the heap, and Σ is referred to as

the spatial part of the heap. Semantically, a symbolic heap Π | Σ where

Π = {P1, P2, . . . , Pn} and Σ = {Q1, Q2, . . . , Qm} expands to a formula

(P1 ∧ P2 ∧ . . . ∧ Pn) ∧ (Q1 ∗Q2 ∗ . . . ∗Qm)

Later papers extend the symbolic heap notion to include more expressive

pure formulas [15], and more sophisticated recursive predicates, such as a

‘list of lists’ predicate [5].

Our fragment includes a general notion of recursive predicate, while sym-

bolic heaps use specific recursive predicates defined for particular domains.

173

For example, early work on the Space Invader tool used a simple list frag-

ment predicate ls(x, y), while more recent work has included a nested ‘list

of lists’ predicate. In both cases these predicates can be defined using our

let statement.

While the various versions of the symbolic heap fragment are quite close

to our fragment, they all include non-spatial assertions that we do not in-

clude in our fragment. All of the symbolic heap fragments include asser-

tions that describe the arithmetic relationships between locations. In mod-

els that include pointer arithmetic these includes less-than and greater-than

assertions. Under our model, without pointer arithmetic, such formulas

are meaningless. However, we could meaningfully extend our fragment to

include pure equality and inequality assertions.

We believe, but have not yet shown, that equality and inequality as-

sertions can be modelled using hyperedge-replacement grammars. In [28],

grammars are examined that extend the semantics of hyperedge replacement

to permit repetition in a rule’s sequence of external nodes. Operationally,

such rules can ‘fuse’ the external nodes of a nonterminal hyperedge. These

node-fusing rules seem like a natural approach to modelling equality and

inequality statements in separation logic.

It is proved in [28] that for any grammar defined using rules with repe-

tition, a corresponding repetition-free grammar exists that defines the same

language. For this reason, we conjecture that conventional HR rules as

defined in Chapter 2 should be expressive enough to model equality and

inequality.

The predicate junk is equivalent to true, and so by the result given in

§8.1.3 cannot be expressed by any hyperedge replacement grammar. How-

ever, as the name suggests, junk is largely used to handle unconnected sec-

tions of the heap. Structure in the heap is specified in the junk-free fragment

of symbolic heaps, which suggests that the structure-specifying properties

of symbolic heaps may be similar to our fragment.

The result of the similarity between our fragment and the symbolic heaps

used in other work on separation logic is to suggest that our fragment, while

restricted, is still suitable for practical use in the description of program

states. This fits with our intuition about hyperedge replacement grammars;

they are general enough to describe useful classes of structures.

174

8.4 Other related work

Our work is relatively novel. The idea of relating separation logic to context-

free graph grammars has not appeared in other work that we have discov-

ered. The work of Lee et al. [52] is the closest we have found. In this,

separation logic is used to give a semantics to grammars, which is then used

as the abstract domain in an automatic shape analysis 1.

A semantics is given to a grammar by mapping it to a separation logic

formula. However, the mapping is only one-way, meaning no correspondence

result can be derived (this is not the aim of the paper). In addition, the

grammars used in [52] are severely restricted compared to our heap-graph

grammars. While the initial elements of the grammar can be graphs, pro-

ductions over nonterminals can only construct single binary branches.

Some other work has been done on the expressibility of separation logic.

The class of closed separation-logic formula is known to be of equivalent ex-

pressive power to the class of formulas in first-order logic without separating

operators [56]. However, in [16] it is shown that the correspondence does not

hold for separation logic formulas that include logical parameters standing

for formulas, and it also does not hold between separation logic with a list

segment predicate and first-order logic with such a predicate.

Our results regarding expressiveness are incomparable to these results,

because the fragment we use omits several operators from full separation

logic, but includes a more general notion of recursion. However, our trans-

lation gives us a more general framework for deriving expressiveness results,

because we map to a class of grammars with many well-understood prop-

erties. The inclusion of a general notion of recursion also allows us to cope

with any recursively-defined predicate, rather than just lists.

1It is interesting that the work on symbolic heaps is descended from this work. As
mentioned in the previous section, symbolic heaps exhibit many grammar-like properties.

175

Part IV

A language for shape safety

176

Chapter 9

CGRS: A language for

shape safety

Pointers in imperative programming languages are indispensable for the ef-

ficient implementation of many algorithms at both applications and systems

level. It is however notoriously difficult to program using pointers without

introducing subtle errors. This is because the type systems of current pro-

gramming languages are in general too weak to detect ill-shaped pointer

structures. At best, a language may ensure that pointer structures are lo-

cally safe, ensuring pointers refer to allocated heap-structures of the correct

type. This kind of correctness prevents the most obvious pointer errors, such

as dereferencing errors and bounds errors. Java programs are pointer-safe

in this sense; C programs are not.

However, such local typing places no restriction on the overall shape

of the pointer structure. For a pointer program to behave as expected,

without error, it must preserve certain properties of its pointer structures.

For example, a binary search tree insertion must preserve membership of the

class of binary search trees. We call these large-scale properties shapes, and

we describe programs that preserve required shape properties as shape safe.

There exists no mechanism in current widely-used programming languages

for ensuring that programs are shape safe.

The Safe Pointers by Graph Transformation (SPGT) project [4, 3] is

a recent approach to ensuring the safety of pointer manipulations. Under

this approach, shapes are specified by graph reduction, and rewrites are

modelled as graph transformation rules. The SPGT project has developed

177

a checking algorithm that allows the checking of graph transformation rules

to determine whether they are shape safe.

This chapter describes a new language that applies the SPGT shape

specification approach to the C programming language. Our new language

extends C with constructs that are the analogues of graph-transformation

rules and of SPGT-style shape specifications. This allows a direct applica-

tion of the SPGT shape-checking methods to the checking of the program for

shape safety. We have called our extended programming language CGRS.

The chapter is structured as follows. Section 9.1 summarises how shapes

are defined by graph reduction under the GRS approach and sketches the

checking algorithm for shape-preservation. Section 9.2 describes the new

constructs in CGRS that allow programmers to write shape specifications

and operations on shapes. Section 9.3 describes an extended example of

the use of a CGRS program for inserting values into an AVL tree. Finally

Section 9.4 considers the size of programs written in CGRS, both before and

after compilation.

9.1 Safe pointers by graph transformation

Under the Safe Pointers by Graph Transformation approach, the properties

of pointer structures are specified as shape types. A shape type consists of

a class of graph structures with common properties defined by a so-called

graph reduction specification (GRS). The kinds of nodes that can be used

in a GRS are defined by a signature that gives a set of labels for nodes and

outgoing edges corresponding to these labels.

Definition 9.1 (GRS typing). Each node models a tagged record of pointers

where the node label, drawn from the node-label alphabet LV , is the tag.

Each edge leaving a node corresponds to a pointer field where the edge label,

drawn from the edge-label alphabet LE, is the name of the pointer field. We

use a function type: LV → ℘(LE) to associate with each record tag its set

of field names: if node v is labelled l and has an outgoing edge e, then the

label of e must be in type(l) and no other edge leaving v must have this

label.

We can encode the type requirement in our notion of a graph signature

(see Definition 2.13). The signature Σ = 〈L, in, out〉 corresponding to a type

178

function type is defined so that L = 〈LV ,LE〉, in(l, l′) = ⊥ for all labels l, l′,

and out(l, l′) = 1 if l′ ∈ type(l) and out(l, l′) = 0 otherwise.

To operate on these Σ-graphs, we use the double-pushout approach

rewrite rules defined in §2.2. Σ-graphs in rules need not be Σ-total, they

can contain nodes with an incomplete set of outgoing edges or unlabelled

nodes with no outgoing edges.

We refer to [4] for conditions on unlabelled nodes and outgoing edges in

rules that ensure that rule applications preserve both Σ-graphs and Σ-total

graphs. For a rule 〈L← K → R〉 we require the following.

• Unlabelled nodes in L are preserved and remain unlabelled with the

same outlabels.

• Labelled nodes in L which are preserved with the same label have the

same outlabels in L and R.

• Relabelled nodes have a complete set of outlabels in L and R. Nodes

may not be labelled in L and unlabelled in R, or vice versa.

• Deleted nodes have a complete set of outlabels.

• Allocated nodes are labelled and have a complete set of outlabels.

See [4] for the formal definitions of these conditions. Rules satisfying these

conditions are called Σ-total rules.

The members of a GRS shape are specified by graph reduction. Each

GRS has a single accepting graph and a set of reduction rules. Any graph

that can be reduced to the accepting graph by some sequence of rule appli-

cations is a shape-type member.

Definition 9.2 (graph reduction specification). A graph reduction specifi-

cation S = 〈Σ,R,Acc〉 consists of a signature Σ, a set of Σ-total rules R and

a Σ-total R-irreducible accepting graph Acc. It defines the graph language

L(S) = {G | G⇒∗
R Acc}.

Definition 9.3 (polynomially terminating GRS). A GRS S is polynomi-

ally terminating if there is a polynomial p such that for every reduction

G0 ⇒R · · · ⇒R Gn on Σ-total graphs, n ≤ p(|VG| + |EG|). It is closed if

for all G ∈ L(S), G ⇒R H implies H ∈ L(S). A polynomial graph reduc-

tion specification, PGRS for short, is a polynomially terminating and closed

GRS.

179

Acc :

L

top

aux

BranchLeaf:

B1

L L

l r ⇒
L1

AuxRoot:

2 3

top aux ⇒

2 3

top
aux

Figure 9.1: Rooted GRS defining the language of binary trees.

Example 9.1 (graph reduction specification). Figure 9.1 shows a GRS for

full binary trees with an extra root node labelled with R (shown in the

picture as a grey-shaded node) and an auxiliary pointer from the root node to

any node in the tree. Its signature is LV = {R,L,B}, LE = {top, aux , l, r},

type(R) = {top, aux}, type(B) = {l, r} and type(L) = ∅. Tree nodes are

either L-labelled leaves or B-labelled branch nodes with outgoing pointers l

and r, and there is a unique R-labelled node with pointers top and aux that

point to the root of the tree and to an arbitrary tree node, respectively. The

accepting graph, Acc, is the smallest graph of this kind.

Fig. 9.1 gives two reduction rules for the GRS. The AuxRoot rule

redirects the auxiliary pointer to the top of the tree (regardless of the labels

of nodes 2 and 3), while the BranchLeaf rule deletes two leaves with the

same parent and relabels that parent as a leaf. Any full binary tree with an

auxiliary pointer can be reduced to Acc by the repeated application of these

two rules, but no other graph can be reduced to Acc.

To see that the rules in the GRS cannot reduce ill-shaped graphs to

Acc, consider their inverses (which are obtained by swapping left- and right-

hand sides). The inverse of AuxRoot can only move the aux pointer to an

arbitrary location, while the inverse of BranchLeaf can only create more

leaf nodes. Consequently both inverse rules preserve full binary trees with

an auxiliary pointer, which implies that the specified shape cannot contain

other graphs.

The GRS is polynomially terminating – actually linearly terminating –

because for every step G ⇒ H on Σ-graphs, the number of nodes without

180

Insert:

L 1

aux
⇒

B 1

L L

aux

l r

Figure 9.2: Graph transformation rule Insert that inserts a new branch
into a binary tree at the position of the aux pointer.

outgoing parallel edges is reduced. The GRS is also non-overlapping, mean-

ing that for each pair of steps H1 ⇐ G⇒ H2 on Σ-graphs, either H1
∼= H2

or there is a Σ-graph M such that H1 ⇒ M ⇐ H2. This property implies

closedness and hence the GRS is a PGRS.

Just as pointer structures are modelled by GRSs, operations on those

structures are modelled by graph transformation rules. Figure 9.2 shows an

operation on the shape of Figure 9.1 that replaces a leaf destination of the

auxiliary pointer with a branch node and two new leaves. This rewrite rule

is an example of a shape safe rule: when applied to a graph that is a binary

tree with an auxiliary pointer, it is guaranteed to produce a graph in the

same shape.

Unrestricted GRSs are universally powerful in that they can define every

recursively enumerable shape, but their membership problem is undecidable

in general.

To check that pointer rewrites conform to the restriction of a GRS, they

must be modelled by graph-transformation rules (which need not obey the

restrictions of PGRSs).

Definition 9.4 (shape-safe rule). A graph-transformation rule r is shape-

safe with respect to a shape L(S) if for all G in L(S), G ⇒r H implies

H ∈ L(S).1

The static checking algorithm Shape-Check developed in the SPGT

project is described in [3]. Briefly, given a graph-transformation rule r and

1For simplicity, we assume that rules have the same input and output shape. The
shape-checking method of [3] can also handle shape-changing rules.

181

a GRS S, the algorithm constructs two abstract reduction graphs (ARGs)

that represent all contexts of r’s left- and right-hand side in members of

L(S). The rule is safe if the right-hand ARG includes the left-hand ARG

as a subgraph. Some ARGs are infinite and hence their construction does

not terminate, but in many practical cases the algorithm produces finite

ARGs representing all left- and right-hand contexts so that inclusion can be

checked. The general shape-safety problem is undecidable even for context-

free shapes [32] and hence every checking method is necessarily incomplete.

The incompleteness which must exist in any shape-checking algorithm

manifests itself in two ways in Shape-Check: first, the construction of ei-

ther of the ARGs may not terminate, and second, even given termination a

shape-safe rule may fail the inclusion test. In practice, this algorithm can

check insertions and deletions in over context-free shapes such as cyclic list,

linked list and binary search trees. However, it often nonterminates when

applied to non-context-free shapes such as balanced trees. Intuitively, such

shapes require an arbitrarily large amount of context, causing nontermina-

tion of the ARG construction algorithm. See [3] for more discussion.

9.2 CGRS: a language for safe pointers

CGRS is an extension to C that implements the GRS approach to shape

specification and shape checking. The main ideas (adopted from [31]) are

that certain pointer structures used in the program have a declared shape

that specifies the possible form of the pointer structure, and that such

pointer structures are only manipulated by transformers that correspond

to graph transformation rules.

9.2.1 Conforming to the C model

The main aim for CGRS is to enable the shape-checking of C programs by

introducing constructs corresponding to graph transformation rules. How-

ever, the graph transformation model of computation differs considerably

from the C model.

Rules under the DPO approach can apply at any location in a graph

where their left-hand sides match. As there may be more than one such

location, they are also non-deterministic. C pointer assignments in con-

trast are deterministic and local, in that they can be applied exclusively at

182

locations held by pointers.

The non-deterministic matching of graph transformation rules creates

another mismatch between the two models. To find a match for its left-hand

side, a rule must search the graph, an operation that requires polynomial

time in the worst case for a rule of fixed size. C pointer assignments in

contrast are guaranteed to terminate in constant time.

As a result, an individual graph transformation rule is considerably more

powerful than an individual C pointer assignment. To apply the GRS ap-

proach to C, the graph-transformation idiom must be fitted more closely

with the conventions of C.

In CGRS we use a restricted form of graph transformation more compat-

ible with the expectations of C programmers. The pointer structures and

transformer functions used in CGRS are restricted by requiring that they

are rooted. Individual rewrite rules are less powerful than general rules, but

they are still sufficiently powerful to replace C pointer manipulations.

Definition 9.5 (C-like rooted graph). We describe a graph as a C-like

rooted graph if: (1) There exists a root label ̺ that is the label for exactly

one node in the graph. (2) Distinct edges with the same source-node have

distinct edge labels.

C pointer structures naturally correspond to such rooted graphs. Such

structures are accessed through a finite group of distinctly-labelled stack

variables, corresponding to roots. The fields of a C struct are distinct,

conforming to the restriction on out-edges in rooted graphs.

Definition 9.6 (C-like rooted rule). A graph transformation rule is a C-like

rooted rules if (1) it has a root label ̺ such that the left-hand side contains

exactly one ̺-labelled node, and (2) every left-hand side node is reachable

from some root. Transformer functions correspond to C-like rooted rules.

Example 9.2 (rooted graphs and rules). The GRS shown in Fig. 9.1 defines

a class of C-like rooted graphs. The rule in Fig. 9.2 is a C-like rooted rule.

Chapter 3 discusses rooted rules in detail, as part of a more general

theory of fast graph transformation. The requirement for a unique root

node-type and the requirement for left-hand side reachability ensures that

C-like rooted graphs and rules conform to our Condition R3. For this rea-

son, C-like rooted rules are deterministic and rule application requires only

constant time.

183

The failure behavior of graph transformation also differs from the stan-

dard C behavior. In the general definition of a graph-transformation rule,

the result of a rule is undefined if no match can be constructed. This is also

the case in programming languages based on graph transformation (e.g. the

GP language [65]). This fits badly with the C approach, where a function

only ever has an undefined value if an error has occurred. This behaviour

is also quite impractical, in that the failure to find a match can be a useful

result for a transformer function. For example, a match failure can be used

to check whether the root node points to a node of a particular type.

As a result, CGRS transformer functions return a boolean value record-

ing whether rule application succeeded. This allows us to use transformers

as conditions as well as a rewriting system. Transformers are passed pointers

to shape-structures and modify these structures in-place. In-place rewriting

is safe because a transformer can only fail during the matching portion of

the execution, before any rewriting has occurred. If the matching process

for a transformer function fails, the input graph is left unmodified. Once

the function terminates, a boolean value is returned that indicates whether

the application succeeded.

The handling of dangling edges in graph transformation differs greatly

from C pointer rewriting. In a graph transformation rule, the dangling

condition ensures that dangling edges cannot be created. Every edge has as

its target a valid node. In C pointer rewriting, no such restriction exists.

Any value can be written into a pointer field, and consequently pointers do

not necessarily point to valid values in the heap. In this case, the graph

transformation behavior is safer than the standard C behavior. Avoiding

dangling edges is an important objective of shape safety. In CGRS we

maintain information in the data structure so that the dangling condition

can be checked for pointer structures. Consequently transformer function

cannot create dangling edges.

Aside: Injective and non-injective matching

Given that we are modelling pointer rewrites, the choice of a formulation

for context-sensitive graph transformation that uses injective matching may

seem slightly surprising. Conventional pointer rewrites are non-injective, in

that rewrites can ‘match’ the same locations in a pointer structure with sev-

eral different names in a single rewrite. For example consider the following

184

pointer accessing rewrite.

v->a->a = w->a

The first and second instance of a referenced from v can refer to the same

location, if the value in v->a points back to itself. In addition, v and w may

point to the same location. Both possibilities correspond to non-injective

matching.

However, our objective in CGRS is to improve pointer program safety,

rather than replicate all the features of conventional pointer rewriting. It is

known that injective matching is more general than non-injective matching,

in that non-injective rules can be simulated by injective rules [40]. The

ability to distinguish between injective and non-injective matches gives a

substantially increased expressive power rewrite rules, and so we have chosen

to use it in our graph transformation formulation and so to apply it to pointer

rewriting.

In addition, using injective matching simplifies the overall presentation

of the thesis. Injective matching provides the most general basis for Part II,

where we generalise to rewriting arbitrary graphs, rather than just pointer

structures. Using non-injective matching would unnecessarily restrict the

scope of this work. The alternative of using different but similar approaches

in different parts of the thesis seems confusing for the reader.

9.2.2 Signatures and shapes

Transformer functions operate on shape structures that are guaranteed to

have the form specified by the shape declaration. Shape structures are

composed of nodes, each of which has a type and an associated fixed set of

fields. In normal C these types and fields are defined by declaring struct

types, while in CGRS they are defined by a signature. The abstract syntax

of CGRS signature declarations and shape declarations is given in Figure

9.3. Here struct-decl-cont stands for any normal C type declaration.

A signature defines a set of node-types. However, node-types are not ma-

nipulated directly in a CGRS program – instead they are referenced through

shape declarations (see page 186).

Signatures consist of a signature block, containing node definitions.

Nodes are defined with a node block, which strongly resembles a C struct

declaration. The ‘fields’ of the declaration consist of edge names labelled

185

sig-def ::= signature sigid{ [node-def;]+ }

node-def ::= nodetype ntid { [node-cont;]+ } |
root nodetype ntid { [node-cont;]+ }
nt nodetype ntid { [node-cont;]+ }

node-cont ::= edge ed [, ed]∗ | struct-decl-cont

shape-def ::= shape shid sigid {
accept { [node-dec;]+ [nid.ed => nid;]∗ }
rules { [rdid;]∗ } }

node-dec ::= ntid nid

Figure 9.3: Syntax for signatures and shapes.

with the edge keyword, and non-edge fields. Unlike normal C pointers, edge-

fields are defined without stating the type of the objects they are pointing

to – edges in CGRS structures can point to any type of node permitted by

the signature.

The following code declares a node-type for use in a binary tree signature.

nodetype branchnode {

edge l, r;

int val;

}

Node declarations can include any type of data field (including pointer

data). To ensure that pointer rewrites are safely encapsulated, transformer

functions cannot do anything other than read or write from these fields. In

the abstract domain of graphs, the data values stored in nodes are abstracted

away, leaving only node and edge labels.

Some classes of graphs require nonterminal nodes for a GRS to success-

fully specify their properties (for example, the language of complete binary

trees, see Theorem 5 in [4]). To model this in CGRS, node types in a signa-

ture can be labelled with the keyword nt. Nodes that are so declared cannot

be used in a transformer.

To fit with our requirement for rootedness structures in CGRS must

include distinguished root nodes (see §9.2.1). These are distinctly labelled

and can appear at most once in the pointer structure. In the signature

exactly one node-type must be declared with the root keyword.

186

A shape declaration in CGRS is the analog of a graph reduction spec-

ification. It defines a class of shape structures, and defines a type for the

shape that can be passed to transformers for manipulation. On an abstract

level, a shape declaration defines a class of conforming shape structures.

The content of this class is defined by mapping shapes to graph reduction

systems and shape structures to graphs (this mapping is defined in §10.1).

A shape declaration consists of a block prefaced with a shape keyword,

a shape name, and a signature name. In the shape block, there are two

blocks: an accept block and a rules block. The accept block uses the same

syntax as a transformer definition to specify the accepting graph, while the

rules block consists of a list of names of reduction rules.

In addition to defining a class of conforming structures, the shape dec-

laration has two roles. First, it defines a C type for pointers to shapes, and

these pointers can be passed around in the same way as pointers to normal

heap data-structures.

Second, the shape declaration implicitly defines a constructor for the

shape. For shape safety to hold, it must be true that all of the shape

structures constructed during program execution are members of the class

of structures defined by the shape. To ensure this is true for when the shape

is first created, we automatically generate a shape-safe constructor function.

We then assume that all shape structures are created by applying shape-

preserving transformers to shape-safe structures, starting with the initial

graph.

The constructor for a shape S is called newgraph S, so for our binary tree

example it will be called newgraph tree. A constructor takes no arguments

and returns a pointer of type S, the top-level shape type defined by the shape

declaration. The structure resulting from the constructor corresponds to the

accepting graph for the shape. (See §10.2.2 for a definition of the constructor

function generated for a shape).

Example 9.3 (signature, shape declaration). In the case of our running

example, the tree insertion code operates over structures composed of root

nodes, branch nodes with two outgoing edges, and leaf nodes with no out-

going edges. We call such a signature with binary branches and leaf nodes

‘bin’. The left side of Figure 9.4 shows the CGRS signature declaration for

bin.

The node types treeroot, branchnode and leafnode correspond to the

187

signature bin {

root nodetype treeroot {

edge top, aux;

}

nodetype branchnode {

edge l, r;

int val;

}

nodetype leafnode {}

}

shape tree bin {

accept {

treeroot rt;

leafnode leaf;

rt.top => leaf;

rt.aux => leaf;

}

rules {

branchleaf;

auxroot;

}

}

Figure 9.4: Left: Signature for a structure composed of branches and leaves.
Right: shape declaration corresponding to the GRS declaration in Figure
9.1.

root, B-labelled branches and L-labelled leaves of the binary tree GRS. The

root node-type is called treeroot.

The signature of a shape is defined separately from the shape itself so

that it can be reused in several shapes. For example, the bin signature can

be used to build structures other than plain binary trees. Clearly, all graph

languages that are subsets of the set of binary trees (such as the language

of balanced binary trees) use the same signature.

We want our transformers to operate over rooted binary trees as defined

by the GRS shown in Fig. 9.1. The corresponding declaration for a CGRS

shape tree is shown on the right-hand side of Figure 9.4. The accepting

graph for the tree shape consists of a rt-type node and a leafnode-type

node. We specify the signature as bin by giving its name as an argument.

The rules block of a signature refers by name to a set of reducers,

which correspond to the reduction rules of the GRS. Reducers are declared

separately from the shape declaration using the reducer keyword. See the

Section 9.2.3 for a description of the syntax of reducers.

9.2.3 Transformer functions

Transformer functions (or just transformers) are the construct in CGRS

used to define pointer manipulations. They are intended to correspond

syntactically and semantically to graph transformation rules. CGRS uses

a textual syntax that correspond closely to the graphical syntax for DPO

188

transformer ::= transformer trid sigid
(shid id [, tid *id]+) {

left ([nid]+)
{ [node-dec;]+ [nid.ed => nid ;]∗ }

right([nid]+)
{ [node-dec;]∗ [right-graph;]∗ }

}

reducer-def ::= reducer rdid sigid {
left ([nid]+)
{ [node-dec;]+ [nid.ed => nid ;]∗ }

right([nid]+)
{ [node-dec;]∗ [nid.ed => nid ;]∗ }

}

node-dec ::= ntid nid

right-graph ::= nid.id => nid | nid.id = nid.id |
nid.id = id | id = nid.id

Figure 9.5: Syntax for transformers and reducers.

rules.

Transformer functions are declared in CGRS in much the same way as

normal C functions. Declarations are added to the top level of the C pro-

gram (or to another file, with the use of a linker). The resulting transformer

function can then be called in the same manner as a conventional func-

tion. Transformer function declarations are translated into boolean-typed

C function declarations with the same name, so in most ways they can be

treated as if they were normal function declarations. The abstract syntax

of a transformer declaration is given in Figure 9.5.

The first declared argument to a transformer function must be a shape-

typed pointer that gives the transformer its shape, and so also its signature.

Following this argument, there can be any number of additional arguments

of pointer type. Values are passed to the transformer function by reference

to ensure that they can be modified in-place.

The constituent nodes of the left- and right-hand sides of a transformer

are declared in a list for each side of the transformer. Unlike graph-transform-

ation rules, nodes in transformer functions are named, and the sharing of

189

names defines the interface nodes between the sides of the transformer func-

tion. The nodes preserved by the transformer rewrite are those appearing in

both the left- and right-hand node lists. Nodes present on one or the other

side only are either allocated or deleted.

The permissible types in these node-type declarations are defined by the

signature used by the transformer (see §9.2.2 above).

Nodes are assigned a node-type (or tag in the terminology of §9.1) using

a syntax similar to C variable declarations. For example, the following code

declares a branch-node for

branchnode n1, n2;

The edges between declared nodes are defined using an arrow syntax

similar to the field access syntax for normal C structures. The following

code matches an l-labelled edge from node n1 to n2.

n1.l => n2;

To conform to our requirement for rootedness (see §9.2.1), there must

be exactly one node on both the left- and right-hand side with a root type.

Furthermore, all nodes in the left-hand side must be reachable by traversing

edges from the root-typed node. This ensures that the corresponding graph-

transformation rules are C-like rooted rules (see Def. 9.6).

To ensure that all nodes in the resulting shape structure have the correct

complement of edges, nodes that are created or retyped must have all the

edges for their node-type declared on the right-hand side. Nodes that are

retyped must also have all of their associated edges matched on the left-hand

side. Without this condition, a transformer could require assignment of two

values to the same field. This condition on transformers corresponds to the

restriction of DPO rules to Σ-total rules.

The left-hand side of the transformer is matched against the shape struc-

ture to identify the section of the transformer for rewriting. Matching op-

erates by locating a portion of the shape structure that is isomorphic to

the left-hand side, starting at the uniquely-labelled root. The match must

satisfy the dangling condition, meaning that applying the rule will not cre-

ate dangling edges. The transformer returns the boolean value FALSE if

matching fails.

190

If matching of the left-hand side succeeds, the transformer applies the

rewrites expressed by the right-hand side. A transformer function performs

five kinds of rewrites on a shape structure:

1. Node creation occurs when a node is named in the right-hand side list

but not the left-hand side.

2. Node deletion occurs when a node is named in the left-hand side list

but not the right-hand side. The matched node is removed from the

shape structure (and from memory entirely).

3. All edges in the left-hand side are deleted.

4. All edges in the right-hand side are created.

5. Node relabelling occurs when the same node is declared in the right-

hand side with a different label than on the left-hand side.

As well as edges and nodes, the right-hand side of a transformer function

can also include value assignments and retrievals. A value may be written

from a variable passed by reference into the value fields of a node, or vice-

versa, out from a value field into a variable. Any C type can be used as

the value field for a node-type, so any kind of value can be stored by a

transformer function in this way.

Values can also be rearranged inside the shape structure by assigning

from one node’s field to another. In transformers with several such rearrang-

ing assignments, it might appear that there is a danger of non-determinism

resulting from the undefined order of assignment. For example, the meaning

of the following pair of assignments seems to depend on the order in which

assignment takes place:

n1.a = n2.a;

n2.a = n1.a;

Our solution is simple: in any assignment a = b, the value assigned to a

is the value of b before execution of the transformer. In other words, values

are frozen on entry to the transformer, and are only altered on exit from

the transformer. In the case of the code fragment immediately above, the

values in n1.a and n2.a are swapped. This has the advantage of avoiding

the need for intermediate variables.

191

transformer tree_goleft bin

(tree *t) {

left (rt, n1, n2) {

treeroot rt;

branchnode n1, n2;

rt.aux => n1;

n1.l => n2;

}

right (rt, n1, n2) {

rt.aux => n2;

n1.l => n2;

}

}

B 1

B

aux

l
⇒

B 1

B

aux l

Figure 9.6: Textual syntax for transformer function for moving a root pointer
down a left-hand branch, and corresponding graph-transformation rule.

Example 9.4 (transformer function). Figure 9.6 shows the declaration for

the transformer function tree goleft, used in the search tree insertion code

to move the auxiliary pointer down the tree. As with a graph transformation

rule, a transformer function declaration consists of a left- and right-hand

side, identified by the left and right keywords.

The right-hand side of Figure 9.6 shows the corresponding graph trans-

formation rule to this transformer function. We define formally the mapping

from transformers to graph transformation rules in §10.1.

A transformer declaration such as the one given in Example 9.4 results

in a transformer function that can be used in much the same way as an

ordinary C function. A transformer function must take as its first argument

a pointer to a shape structure. It can then have an arbitrary number of

additional arguments consisting of pointers to variables which can be read

from or written to.

Example 9.5 (transformer function program). We will illustrate CGRS

with the simple example of insertion into a binary search tree. This code

fragment inserts a value i into a binary search tree pointed to by the pointer

variable b. The pointer b into the binary search tree has the shape tree,

corresponding to rooted binary tree GRS given in Figure 9.1. The pointer

manipulations required for performing the insertion have been encapsulated

into transformer functions.

insert(tree *b, int i) {

192

int t;

tree_reset(b);

while (tree_getval(b, &t)) {

if (t == i) return b;

else if (t > i) tree_goleft(b);

else tree_goright(b);

}

tree_insert(b, &i);

}

The insertion into the tree works as follows: First the transformer tree -

reset moves the auxiliary pointer to the root of the tree. Then the tree is

traversed by repeatedly comparing the integer values in branch nodes with

the integer i and following either the left or the right pointer, using the

transformers tree goleft and tree goright (as defined in Example 9.4).

Leaves don’t hold values, so if the search ends at a leaf (identified because the

value recovery transformer function tree getval fails) then tree insert

inserts a branch node, and the value is written into the appropriate field.

In addition to the transformer functions in a CGRS, there can be a

number of reducers, which correspond to the reduction rules of the GRS.

Reducers are declared using the reducer keyword. They have a similar

syntax to transformer functions, including left and right-hand side declara-

tions. They differ in that reducers have no arguments and cannot be called

as functions in the resulting program. Their semantics is purely abstract.

Example 9.6 (reducer). The left side of Figure 9.7 shows branchleaf,

a reducer for the binary tree example, and the right side shows the corre-

sponding reduction rule BranchLeaf from the binary tree GRS in example

9.1.

9.3 Example: tree insertion and rebalancing

In this section we give a more complicated example of the use of CGRS:

rebalancing operations. This example illustrates the fact that complex graph

rewrites can be specified in CGRS in a way which closely conforms to their

original specifications.

An AVL tree is a balanced search tree that allows inexpensive rebalancing

after an insertion or deletion [50, §6.2.3].

193

reducer branchleaf bin {

left (br, l1, l2) {

branchnode br;

leafnode l1, l2;

br.left => l1;

br.right => l2;

}

right (br) {

leaf br;

}

}

B1

L L

l r ⇒
L1

Figure 9.7: Reducer for the binary tree shape shown in Figure 9.4 and
corresponding reduction rule from the GRS given in Figure 9.1.

Definition 9.7 (AVL tree). A binary tree is an AVL tree if the heights

of the two child subtrees of any node differ by at most one. The balance

factor of a node is the height of its right subtree minus the height of its left

subtree. A node with balance factor 1, 0, or -1 is considered balanced, while

nodes with any other balance factor are considered unbalanced and require

a rebalancing of the tree. To allow fast rebalancing, AVL tree structures

record the balance factor of each node in the node itself.

Lookup, insertion and deletion all require time O(log n) for an AVL tree,

so AVL trees are often used as a data-structure for the efficient recording of

sorted data.

In [4] it is shown that the class of AVL trees can be specified using

a GRS. A corresponding AVL tree shape can be constructed in CGRS by

simply implementing this example as a shape. The CGRS syntax is close

enough to graph transformation that this example can be translated without

much difficulty.

However, the GRS is quite complex, and we require in addition to the

AVL shape a stack to record back-pointers which makes the GRS larger still.

Our objective in this section is illustrate CGRS as a programming language,

rather than to just convert existing GRSs into CGRS syntax. To simplify the

example, and focus on the rebalancing operations, we here define a weaker

shape that includes AVL trees as a sub-class of its language. The shape we

define is the class of unbalanced trees with AVL-like labels.

Tree-nodes in our shape can be labelled with +, − or •. Tree-nodes have

two outgoing edges, labelled l and r. Our AVL trees also have an attached

194

+

• +

L L L •

L •

L L

t

l r

l r l r

l r

l r

h

h

h

h

p

Figure 9.8: Tree with stack and AVL labels.

stack permitting traversal up the tree, where stack nodes are labelled h.

Stack nodes have two outgoing edges. These are labelled b and c, but are

shown in diagrams as finely-dotted and coarsely-dotted edges respectively.

Figure 9.8 shows an (unbalanced) member of the class.

To specify a GRS for trees with AVL labels we modify the binary tree

GRS given in Fig. 9.1 to specify a language of arbitrarily unbalanced AVL

trees with an attached stack. Figure 9.9 shows the reduction rules and ac-

cepting graph of the GRS for the GRS. The accepting graph consists of a

single leaf-node, a stack node, and a root node. The reduction rules consist

of BranchLeaf, which replaces tree branches with leaves, and Stack-

Delete, which removes stack nodes.

The class of validly-labelled balanced AVL trees is a subclass of the

language specified by the GRS. In a valid AVL tree, nodes that are balanced

are marked with the • symbol; nodes have a balance factor of -1 have the

symbol −; nodes with balance factor 1 are marked with +. Figure 9.10

shows a balanced AVL tree.

Figure 9.11 shows the CGRS shape avl which corresponds to this GRS.

The signature avltree defines the required node types, and the reducers

branchleaf and stackdelete correspond directly to the reduction rules in

the GRS.

In defining avl we make use of a slightly extended syntax for nodes and

labels. The existence of several kinds of distinct branch node means that

195

Acc :

L

t
h

p

BranchLeaf:

x1

L L

l r ⇒
L1

x ∈ {−, •,+}

StackDelete:

x1

2

h 3

h

y
⇒

x1

2

h 3

y

x ∈ {−, •,+}, y ∈ {l, r}

Figure 9.9: GRS for unbalanced trees with AVL labels.

+

• +

L L L •

L L

t

l r

l r l r

l r

h

h

h

p

Figure 9.10: Balanced AVL tree with stack.

196

signature avltree {

root nodetype avlroot

{ edge t, p; }

nodetype lbr

{ edge l, r; }

nodetype rbr

{ edge l, r; }

nodetype bbr

{ edge l, r; }

nodetype stack

{ edge c, b; }

nodetype leaf {}

}

shape avl avltree {

accept {

avlroot rt;

leaf lf;

stack st;

rt.t => lf;

rt.p => st;

st.c => lf;

st.b => rt;

}

rules {

branchleaf;

stackdelete;

}

}

reducer stackdelete avl {

left (br, n1, s1, s2) {

[lbr,rbr,bbr] br;

stack s1,s2;

br.[x] => n1;

s1.c => br;

s2.c => n1;

s2.b => s1;

}

right (br, n1, s1) {

br.[x] => n1;

s1.c => br;

}

}

reducer branchleaf avl {

left (br, l1, l2) {

[lbr,rbr,bbr] br;

leaf l1, l2;

br.l => l1;

br.r => l2;

}

right (br) {

leafnode br;

}

}

Figure 9.11: Signature and shape declarations for the avl shape.

our original syntax would require separate reducer definitions covering each

case. To avoid this, we define a syntax for matching sets of node labels, and

for matching variable names to edge labels.

In branchleaf and stackdelete we write the following to match any

node br with label rbr, lbr or bbr:

[rbr, lbr, bbr] br;

We also extend the syntax of edge matching to include variables. To asso-

ciate the label x with any edge from node br to n1 we write the following:

br.[x] => n1;

These edge variables can then be use on the right-hand side, allowing us to

redirect an edge with any label permitted by the signature.

197

This minor extension does not require that we alter our semantics, as

reducers written using the new syntax can always be expanded to finite sets

of reducers written in our original syntax.

We now look at the CGRS code that rebalances an unbalanced AVL

tree following an insertion. We will assume that the first stage of insertion

is implemented using a modified version of the tree insertion code from §9.2.

This code constructs the stack as it traverses down the tree.

The rebalancing code then steps up the stack, incrementally updating

the balance factors recorded in the node, until either the height of the tree is

unaltered by the update, or a single a single rotation can be applied. Once

the tree has been rebalanced, the rest of the stack is removed. The following

code implements this process using calls to transformer functions.

for (; ;) {

if (rup(tree) || lup(tree)) ;

else if (relim(tree) || rsingle(tree) ||

rdouble(tree) || lelim(tree) ||

lsingle(tree) || ldouble(tree))

break;

}

The code takes advantage of the lazy evaluation of C boolean operators.

Because a transformer returns a boolean value recording whether the trans-

former succeeded or failed, at most a single transformer will succeed out of

any of the transformers given in the disjunction, meaning that only a single

rotation or tree-climbing operation will be applied at each iteration of the

loop.

The lup and rup operations update the balance factor of the current

node and pop a single element off the stack. The rup transformer is shown

in Figure 9.12, along with the corresponding graph transformation rule.

In Figure 9.13 we show the transformer function rdouble that imple-

ments a right-hand double rotation. This rotation rearranges three of the

tree’s nodes, while preserving the descendant subtrees and parent node. To

do this, the transformer function has to include the surrounding nodes in

the left-hand side, with the result that this transformer is larger than the

abstract specification of a rotation.

rdouble also makes use of our extended syntax for variable matching.

By covering more cases this substantially reduces the number of reducers

198

transformer rup

avltree (avl *x){

left (rt,h1,h2,n1,n2) {

avlroot rt;

bbr n1;

stack h1, h2;

rt.p => h2;

h2.b => h1;

h2.c => n2;

h1.c => n1;

n1.r => n2;

}

right (rt,h1,n1,n2) {

rbr n1;

rt.p => h1;

h1.c => n1;

n1.r => n2;

}

}

•1

2

h 3

h

r
⇒

+1

2

h 3

r

Figure 9.12: Transformer rup and corresponding graph transformation rule.

that must be defined. At most a single instance of the labelling can match

any single target shape structure, so this extension does not introduce any

unwanted nondeterminism into transformers.

As with reducers, this extension does not require a change to the seman-

tics. For any transformer function written using this new syntax, we can

construct a set of corresponding transformers written in our core syntax by

instantiating the node and variable names with all possibilities satisfying the

signature. This set of transformers can then be inserted into a C disjunction

in the same way as in the code above.

The tree rotation shown in Figure 9.13 illustrates an advantage of CGRS

as a language for specifying complex graph algorithms. Because its syntax

is close to graph transformation rules, very large rewrites can be defined in a

way that is close to their abstract specification. The CGRS function rdouble

corresponds syntactically to the underlying AVL tree rotation. In contrast,

the corresponding C code would be quite different from the specification of

the rotation, making it more difficult to specify and debug.

The remaining right-hand rotations relim and rsingle are shown in Fig.

9.14 and Fig. 9.15 respectively. We also require the left-hand mirrors of the

rotations, lup, ldouble, lelim and lsingle. These have been omitted as

they are very similar to the transformers that have already been defined.

199

transformer rdouble

avltree (avl *x){

left (rt,h0,h1,h2,

n1,n2,n3,n4,n5) {

avlroot rt;

stack h0, h1, h2;

[rbr, lbr, bbr] n0;

rbr n1;

lbr n2;

[rbr, lbr, bbr] n3;

rt.p => h2;

h2.c => n2;

h2.p => h1;

h1.c => n1;

h1.p => h0;

h0.c => n0;

n0.[v] => n1;

n1.r => n2;

n2.l => n3;

n3.l => n4;

n3.r => n5;

}

right (rt,h0,h1,n1,

n2,n3,n4,n5) {

bbr n1,n2;

rt.p => h1;

h1.c => n3;

h1.p => h0;

h0.c => n0;

n0.[v] => n3;

n3.l => n1;

n3.r => n2;

n1.r => n4;

n2.l => n5;

}

}

x0

+1

+2

y3

4 5

h

h

h

v

r

l

l r

⇒

x0

•1 • 2

y3

4 5

h

h

v

l r

r l

Figure 9.13: Transformer rdouble and corresponding graph transformation
rule.

200

transformer relim

avltree (avl *x){

left (rt,h1,h2,n1,n2) {

avlroot rt;

lbr n1;

stack h1, h2;

rt.p => h2;

h2.b => h1;

h2.c => n2;

h1.c => n1;

n1.r => n2;

}

right (rt,h1,n1,n2) {

bbr n1;

rt.p => h1;

h1.c => n1;

n1.r => n2;

}

}

−1

2

h 3

h

r
⇒

•1

2

h 3

r

Figure 9.14: Transformer relim and corresponding graph transformation
rule.

9.4 Code size in CGRS

The large AVL tree example given in §9.3 illustrates one of the problems

with CGRS as a language – the specification of rewrites are typically quite

large. To compare this to standard C, let us consider the transformer rup

given in Fig. 9.12.

We can implement this in plain C by the following function. This checks

that the balance factor of the tree-node is correct, then pops the stack. It

returns NULL if matching fails. We assume the presence of a separately-

allocated stack. With a tree including back-pointers, the call to free could

be removed.

stack *rup_c (stack *h2) {

node *n1;

stack *h1;

h1 = h2->back;

n1 = h1->node;

if (n1.balance = 0) {

n1.balance = 1;

free(h2);

return h1;

201

transformer rsingle

avltree (avl *x){

left (rt,n0,n1,n2,n3,

h0, h1, h2) {

avlroot rt;

[lbr,bbr,rbr] n0;

rbr n1, n2;

rt.p => h2;

h2.c => n2;

h2.p => h1;

h1.c => n1;

h1.p => h0;

h0.c => n0;

n0.[v] => n1;

n1.r => n2;

n2.r => n3;

}

right (rt,n0,n1,n2,

n3,h0, h1) {

bbr n1,n2;

rt.p => h1;

h1.c => n2;

h1.p => h0;

h0.c => n0;

n0.[v] => n2;

n2.r => n1;

n1.r => n3;

}

}

x0

+1

+2

3

h

h

h

v

r

r

⇒

x0

•1

•2

3

h

h

v

r

r

Figure 9.15: Transformer rsingle and corresponding graph transformation
rule.

} else

return NULL;

}

Clearly the code is shorter in C – 12 lines, compared to 19 for the CGRS

version. The difference in size comes from two sources. First, CGRS requires

that removed nodes have all edges specified in their left-hand sides, which

means that the node n2 has to be explicitly referenced. Second, CGRS

reproduces several pieces of information, such as the shared graph between

the left and right-hand sides.

This increase in code-length seems to be typical when comparing CGRS

transformers with similar C functions. Let us consider a second example –

the transformer tree goleft defined in Example 9.4. The following code

202

implements an equivalent operation in C.

node *tree_goleft (node *h2) {

if (node->type = branchnode)

return node->left;

else

return NULL;

}

This function is only 6 lines, compared to 12 for tree goleft. If we

assume that the input to the function is a branch-node, we can reduce this

even further, down to a single-line function.

Care must be taken when comparing C with CGRS, because the match-

ing process for a CGRS transformer is semantically more restrictive than

pointer rewriting. A C pointer rewrite performs no checks about the struc-

ture being rewritten before rewriting, while a CGRS transformer checks a

match for injectivity and conformance to the required pattern of labels be-

fore performing an update.

To see this, consider the rewrite rdouble given in Fig. 9.13. Any corre-

sponding code written in C must check that the tree matches the whole of

the left-hand side of the corresponding rule. While the transformer function

is quite large, the corresponding C code must also be large.

Another source of code-size increase in CGRS is the fact that a large

number of similar rules are often required. For example, to encode a full

rebalancing function for AVL trees, the function would require both rup

and lup functions, going up right branches and left branches. The same

holds for rdouble and ldouble. It is currently difficult to express similar

but distinct rewrites in a compact style in CGRS. This is caused by the

limited amount of parametricity currently available in CGRS. C function in

contrast can express several different cases internally in a function.

Signature declarations are however typically quite similar in size to the

corresponding structure declarations in a C program. A shape declaration

is obviously not present in a C program, but a shape declarations avoids the

need for an initialisation function for a structure.

We hope that these problems can be can be ameliorated in future work.

One possibility is that CGRS programs could be written graphically, in a

notation matching the graph transformation syntax. This would remove the

problem of the verbose syntax by hiding it entirely. Further development of

203

the syntax may also give ways to parametrise more successfully, to reduce

the number of explicit cases.

204

Chapter 10

Semantics of CGRS and

shape safety

In this chapter we give a concrete and abstract semantics to CGRS pro-

grams. The chapter is structured as follows: Section 10.1 describes how we

extract graph reduction specifications and graph transformation rules from

the constructs of CGRS. Section 10.2 defines the operational semantics of

CGRS constructs by mapping them to fragments of standard C. Section 10.3

defines an operational semantics for a small fragment of C called µC, used

in our proof of correctness. In Section 10.5 we use this semantics to give a

proof of the correctness of the two mappings described in Sections 10.1 and

10.2. In Section 10.6 we use the results derived in previous sections to de-

fine the shape-safety guarantees given by CGRS. While we have defined an

operational semantics for CGRS, the language has not been implemented.

In Section 10.7 we discuss some of the possibilities for an implementation of

CGRS.

10.1 Extraction of GRSs and rules from CGRS

Our main aim in designing CGRS is to enable static checking for shape-

safety, using the checking algorithm described in [3]. To use this algorithm,

we must extract from the constructs of the CGRS program corresponding

GRSs and graph transformation rules. In this section we define the extrac-

tion function G[[−]] that maps from the domain of CGRS programs to the

domain of graph transformation.

205

G[[−]] operates over the domain of CGRS declarations – signature decla-

rations, shape declarations and transformer function declarations. Signature

declarations are mapped to graph signatures, shape declarations to graph

reduction systems and transformer function declarations to graph trans-

formation rules. CGRS constructs have been designed to be syntactically

extremely close to graph transformation rules, graph signatures, and GRSs,

so G can be defined quite informally without the risk of ambiguity.

To reason about CGRS, we abstractly represent CGRS shape declara-

tions.

Definition 10.1 (abstract declaration). In order to refer unambiguously

to elements of a concrete CGRS declaration, we break them down into an

abstract declaration. In an abstract declaration σ = 〈σg, σh, σr〉, σg is the

shape declaration body, σh the associated signature, and σr is the set of

reducers.

We also assume several fixed values as part of the abstract declaration.

Let G be the name of the shape and S the name of the signature. Let

N1, . . . , Nm be the names of the node-types defined in σg. For each node

Ni, let ENi
be the set of edges assigned for node Ni and VNi

the set of value

fields. Let R be the name of the unique root node type, and VR the set of

edge fields for R.

Example 10.1 (abstract declaration). For the concrete shape declaration

shown in Fig. 9.4, we can construct the abstract declaration σ = 〈σg, σh, σr〉.

Here σg refers to the concrete definition of the shape tree given in Figure

9.4, σh refers to the signature bin given in the same figure, and σr refers to

the definitions of branchleaf and auxroot given in Fig. 9.7.

Of the associated given values, G is tree and S is bin. The set N1, . . . , Nm

of node names is {treeroot, branchnode, leafnode}. R is treeroot. The

set of edges can be determined by examining the definitions in bin, so for

branchnode Ebranchnode is {l, r}.

Definition 10.2 (corresponding graph signature). Given an abstract dec-

laration σ we define a corresponding graph signature Σσ = 〈Cσ, inσ, outσ〉,

with set of vertex labels CV defined as the set of nodetype labels defined in

σ, and set of graph edge labels CE defined as the set of all CGRS edge-field

labels used in any of the node-types. The outgoing edge function for signa-

ture Σσ is defined for node label Ni and edge label l so that, outσ(Ni, l) = 1

206

if l ∈ ENi
, and outσ(Ni, l) = 0 otherwise. The incoming edge function is

defined so that inσ(Ni, l) = ⊥ for all Ni and l.

The graph signature Σσ abstracts away from values held in the nodes.

This is because our shape checking approach verifies only the shape prop-

erties of structures – values are ignored. For this reason, non-edge fields in

a CGRS node-type declaration have no counterparts in the resulting graph

signatures.

Example 10.2 (corresponding graph signature). Given the abstract dec-

laration σ defined in Example 10.1, we can define a corresponding graph

signature Σσ = 〈〈Cσ,V , Cσ,E〉, inσ, outσ〉. Here Cσ,E = {top, aux, l, r} and

Cσ,V = {branchnode, leafnode, treeroot}. The inbound edge function

in(−,−) is ⊥ for all values. The outbound edge function out(lv , le) is 1

if

(lv, le) ∈ { (branchnode, l), (branchnode, r),

(treeroot, top), (treeroot, aux)}

and 0 otherwise.

Graph transformation rules are constructed by G from the reducers in σr.

The left- and right-hand side graphs of the rule are first constructed from

the left and right blocks of the transformer by mapping each node-name

to a node in the corresponding graph. The interface graph for the rule is

then constructed from the nodes named in both of the transformer’s node

lists.

Example 10.3 (rule abstraction). Figure 9.6 in §9.2 shows the graph trans-

formation rule produced by applying G to the transformer tree goleft. The

‘edges’ and ‘nodes’ of the transformer function are abstracted to correspond-

ing graph edges and graph nodes in the rule, and the interface is constructed

from the shared node names. (We use the letter B to stand for branchnode

and L for leafnode).

Because G abstracts away value fields, the graph transformation rules

it constructs only model structural rewrites and ignore value field rewrites.

This means that the graph transformation rules produced by G abstractly

model the concrete transformer functions.

207

transformer bin tree_insert

(tree *t, int *inval) {

left (rt, n1) {

treeroot rt;

leafnode n1;

rt.aux => n1;

}

right (rt, n1, l1, l2) {

branchnode n1;

leafnode l1, l2;

rt.aux => n1;

n1.l => l1;

n1.r => l2;

n1.val = *inval;

}

}

G
−→

L 1

aux
⇒

B 1

L L

aux

l r

Figure 10.1: CGRS transformer function tree insert and corresponding
graph transformation rule produced by applying G.

For example, Figure 10.1 shows the binary tree insertion transformer

tree insert and the graph transformation rule constructed from it by G

(this rule was originally shown at the start of Chapter 9 in Figure 9.2). In

this rule, G ‘forgets’ the integer value field val in node n1.

Shape declarations are mapped by G to graph reduction specifications.

The accepting graph for the new GRS is constructed from the accept block

in the same way as the left- and right-hand blocks of a transformer function.

Reducers are syntactically almost identical to transformer functions, and

they are mapped to graph transformation rules in the exactly the way we

have described above.

10.2 Translating CGRS to C

In this section we define an operational semantics for CGRS constructs by

translating them to C code. Only the extra constructs defined in CGRS

(transformers, signatures, and shape declarations) result in modified C code,

while the pure C portions of a CGRS program are left unmodified by the

translation. After CGRS constructs have been translated, the resulting

C code can be compiled and executed in the normal way. As a result,

programmers can mostly treat CGRS constructs as if they were normal C

208

functions and types.

The function C[[−]] takes as its input CGRS constructs and produces

blocks of C code. The translation of shapes, signatures and transformer

functions performed by C is discussed below, but note that reducers are not

executable and so are not translated to C code.

The translation function C[[−]] implements the CGRS constructs in µC,

a fragment of C. This fragment, which is defined in Section 10.3, includes

restricted conditional statements and assignment to heap structures, but

omits almost all control flow, including function calls. The aim of translating

CGRS to a restricted language such as µC is to allow a simple proof of

correctness. µC has an operational semantics defined in Section 10.3, which

we use in Section 10.5 to prove the correctness of the function G with respect

to C.

Figure 10.2.1 shows the definition of C[[−]] for signatures, Figure 10.2.2

shows it for shape declarations and 10.2.3 shows it for transformers. The

definitions are annotated with comments identifying different parts of the

definitions written in the C99 ‘//’ style [45].

To allow substitution, the code includes logical variables. Given code

fragments C and C’, C[x \ C′] stands for C with variable x replaced by C’.

The notation [C]x∈vals stands for the concatenation of C[x \C1], C[x \C2] . . . ,

where vals = {C1, C2, . . .}. If vals is an sequence of values rather than a set,

then the code fragments are concatenated in sequence-order. Otherwise, the

ordering is arbitrary.

10.2.1 Signature translation

Figure 10.2 shows the definition of the translation function C[[−]] over CGRS

signature declaration. We use the bin signature and tree shape given in

Figure 9.1 as the running example in this section and the next. The complete

code produced by C[[−]] when applied to bin and tree is given in Figure

10.3.

From a signatures declaration in CGRS, C[[−]] constructs a set of C

struct types that form the basic building blocks of shape structures. These

data-structures are of two kinds. First, C[[−]] constructs a set of types corre-

sponding directly to individual node-types. Second, C[[−]] constructs a pair

of ‘wrapper’ data-types that can be used polymorphically to stand for any

node type. These wrapper types record extra node data and simplify node

209

C

t
signature S
{ N1;. . . Nn; }

|
=

// Node structures

[N J N K]N∈{N1...Nn}

// Wrapper structure

typedef struct S struct {
int type;

int indeg;

S union *node;

} S struct;

// Wrapper union

typedef union S union {
[struct n n;]n∈Nodes

} S union;

where:
Nodes = node-types defined in {N1 . . . Nn}

N J nodetype N { F } K = struct N { T J F K }
T J edge E1. . . En K = [S struct *e;]e∈{E1...En}

Figure 10.2: Translation from CGRS signatures and data types to C type
declarations.

retyping.

The data-types defined from a signature declaration are held in a con-

tainer structure. Container structures are then passed to transformer func-

tions to manipulate the shape structure. Container structures are defined

by C[[−]] from shape declarations (see §10.2.2 below).

Individual declarations for terminal node types are translated into C

struct declarations. Edge fields are translated into pointers of type *S struct,

where ‘S’ is the name of the signature. This S struct type is the wrapper

type used to stand for any node-type in signature S, so edge fields in a node

type can point to any type of node in the signature. Non-edge fields in a

node-type declaration are included directly as fields in the resulting struct.

In the signature bin for our running binary tree example, branch nodes

are declared as the node-type branchnode. The declaration is translated by

C[[−]] into the struct declaration given below.

210

struct treeroot {

struct bin_struct *top;

struct bin_struct *aux;

};

struct branchnode {

struct bin_struct *l;

struct bin_struct *r;

int val;

};

struct leafnode { };

typedef union bin_union {

struct treeroot treeroot;

struct branchnode branchnode;

struct leafnode leafnode;

} bin_union;

typedef struct bin_struct {

int type;

int indeg;

bin_union *node;

} bin_struct;

typedef struct tree {

bin_struct *root;

} tree;

tree *newgraph_tree () {

tree *new;

bin_struct *rt_s;

bin_struct *leaf_s;

bin_union *rt_u;

bin_union *leaf_u;

rt_s =

malloc(sizeof(bin_struct));

rt_u =

malloc(sizeof(bin_union));

rt_s->node = rt_u;

rt_s->type = TREEROOT;

rt_s->indeg = 0;

leaf_s =

malloc(sizeof(bin_struct));

leaf_u =

malloc(sizeof(bin_union));

leaf_s->node = leaf_u;

leaf_s->type = LEAFNODE;

leaf_s->indeg = 0;

rt_u->treeroot.top = leaf_s;

rt_s->indeg = rt_s->indeg + 1;

rt_u->treeroot.aux = leaf_s;

rt_s->indeg = rt_s->indeg + 1;

new = malloc(sizeof(tree));

new->root = rt_s;

return new;

}

Figure 10.3: Source code produced from the shape declarations bin and
tree.

node branchnode {

edge l, r;

int val;

}

C
−→

struct branchnode {

struct bin_struct *l;

struct bin_struct *r;

int val;

};

For each signature declaration, the translation function C[[−]] also defines

a pair of wrapper data-types S struct and S union that together form a

generic node-type for nodes in the S signature. In other words, these data-

types can simulate any of the node-type structs we have defined, such as

211

branchnode. They also provide a common interface to auxiliary data stored

in the structure.

The wrapper structures are used in pairs. An instance of the S struct

datatype records auxiliary data and points to an instance of the S union

datatype, which records the outgoing edges for the node. Such an instance

in the heap is called a node-pair.

Auxiliary data is required in shape structures because simple pointer

structures composed of struct-declared data-structures and pointers do not

include enough information to support our general model of graph transfor-

mation. The wrapper structures record two pieces of auxiliary data for each

node-pair: (1) the node-type currently simulated, and (2) the number of

pointers in the rest of the shape structure that point to the current node-

pair.

Access to the type of a node is necessary to allow untyped edges. In

simple C pointer-structures, the type of a pointer specifies the type of its

target in the heap. This is necessary because the type of a heap element is

not recorded at run-time. Unlike C pointers, edges in GRS graphs do not

record the type of the object pointed to – an edge-field can point to a node of

any type defined in the signature. To implement this in C, edge-fields are all

typed *S struct for signature S, and individual node types are simulated

by the wrapper structure.

The type simulated is recorded in the type field. For simplicity, the

types of nodes are recorded as integer type-codes rather than as strings.

The translation assumes a globally-consistent injective function typenum(−)

from node-type names to integers.

When deleting nodes, we must prevent dangling pointers. In the graph-

transformation framework this is enforced by the dangling condition, which

prohibits node deletion that result in dangling edges (see §2.2). To check

the dangling condition given a matching morphism, it suffices to know the

number of incoming and outgoing edges to the matched node. To implement

this in C, it is sufficient to know the number of incoming pointers from other

structures in the shape structure, as outgoing pointers are limited by the

number of fields.

The use of wrapper structures enables a third feature of graph transfor-

mation that is not present in simple C pointer structures. In C it is not in

general possible to alter the type of a heap object in-place. This is because

212

different heap data-structures are of different sizes, and so retyping objects

may violate memory integrity. In graph transformation rules however, we

want to be able to relabel nodes in-place, which corresponds to node retyp-

ing in the C domain. This is implemented by wrapping all of the node-types

declared by a signature into a single union.

Note that the auxiliary data stored in the wrapper structures must be

initialised when the node is created, so for safety reasons the creation of

nodes should only occur through the application of transformer functions.

The wrapper structure S struct records the type-code of the node in

the integer field type and the number of incoming edges in field indeg. The

node field points to the wrapper union type S union. For the binary tree

signature bin, the following wrapper structure bin struct is constructed.

typedef struct bin_struct {

int type;

int indeg;

bin_union *node;

} bin_struct;

The wrapper S union is constructed so both the name and type of each

field corresponds to a declared node-type, as defined above on page 210. As a

result, such a union can simulate any of the node types in the signature. For

the binary tree example, there are three node types, treeroot, branchnode

and leafnode, which results in the following union declaration.

typedef union bin_union {

struct treeroot treeroot;

struct branchnode branchnode;

struct leafnode leafnode;

} bin_union;

The elements of this union are accessed through the standard C syntax

for unions. So to access the val field of a branchnode structure through

a variable x pointing to a bin union-typed heap object, the syntax will be

x->branchnode.val.

10.2.2 Shape translation

Figure 10.4 shows the definition of the translation function C[[−]] over CGRS

shape declarations.

213

C

u
wwwwwwwv

shape S C {
accept

{ A1;. . . An; }
rules

{ P1;. . . Pm; }
}

}
�������~

=

// Container type for shape structures

typedef struct S {
C struct *root;

} S;

// Shape structure constructor

S *newgraph S () {
S *new;

[C struct *v s ;]v∈Nodes

[C union *v u ;]v∈Nodes

[MJ T V K](T V)∈{A1...An}

[IJ s.e=>i K](s.e=>i)∈{A1...An}

new = malloc(sizeof(S));

S->root = R s;

return new;

}

where:
R is the root-typed node name
Nodes is the set of node names in
{A1 . . . An}

MJ T V K =

V s = malloc(sizeof(T struct));

V u = malloc(sizeof(T union));

V s->node = V u;

V s->type = typenum(T);
V s->indegree = 0;

IJ V.E => T K =

V u->t.E = T s;
T s->indeg = T s->indeg + 1;

where t is the node-type of source node V

Figure 10.4: Translation to C for CGRS shapes.

A CGRS shape declaration is mapped by C[[−]] to a definition of a top-

level container type for shape structures and a constructor function for the

shape. The container type is the main handle for passing shape structures

to transformer functions. The constructor function initialises a structure

that corresponds to the shape’s accepting graph.

The container type has the same name as the shape declaration, so in

our running example of a binary tree signature, the container type tree is

declared. The only field in the container type is the root field, pointing to

the node-type corresponding to the graph root. Note that this node must

214

be of the signature’s root type. In the binary tree example, the following

shape type is constructed.

typedef struct tree {

bin_struct *root;

} tree;

The advantage of defining a container for a shape-structure is that the

C type-system can be used to keep track of the shape structure’s type.

From a shape declaration S, the function C[[−]] defines the constructor

function newgraph S. For example, for the tree shape tree C[[−]] builds a

constructor function called newgraph tree. The constructor function for a

shape constructs the shape-structure corresponding to the accepting graph.

This requires the construction of three kinds of heap element: (1) the top-

level shape container type, (2) instances of the appropriate nodes-types de-

fined from the signature and (3) edges to give the correct pointers between

the new nodes.

The equivalent in the heap of a graph node is a node-pair, consisting of a

node structure and a node union. For each node in the accepting graph, the

constructor allocates a node-pair using malloc, then points the node field

of the structure at the union and initialises the fields of the structure. For

example, for the leaf-node leaf in the binary tree example, this results in the

following code (here LEAFNODE stands for the integer typenum(leafnode)):

leaf s = malloc(sizeof(bin struct));

leaf u = malloc(sizeof(bin union));

leaf s->node = leaf u;

leaf s->type = LEAFNODE ;

leaf s->indegree = 0;

The edges of the graph are instantiated and the indegree fields of the

node-pairs updated. Finally the constructor allocates the shape container

type using malloc, and the root field of the container is pointed at the

newly-allocated root-typed node pair. The location of the new top-level

structure is returned by the constructor, so that it can be recorded in a

variable by the programmer.

215

10.2.3 Transformer translation

We now define the transformation function C[[−]] from CGRS transformer

functions to C. The formal definition of this function is given in Figure 10.5.

We use the tree goleft transformer function given in Figure 9.6 as the

running example in this section. The complete code produced by C[[−]] is

given in Figure 10.6.

From a transformer function declaration, C[[−]] constructs a C function

with the same name. The function takes as its first argument a shape

container structure holding the shape structure to be manipulated.

Transformer functions resemble graph transformation rules quite closely.

As with the a graph-transformation rule, there are three phases in a trans-

former application:

1. Variables are constructed corresponding to a matching morphism be-

tween the transformer’s left-hand side and the nodes in the shape

structure.

2. The dangling condition is checked for the constructed variables.

3. The image of the left-hand side is transformed into the image of the

right-hand side by creating and deleting nodes and modifying the con-

tent of preserved nodes.

The code in Figure 10.5 includes comments identifying these three phases.

The function C assumes an edge enumeration e1 . . . en of the edges in the

transformer’s left-hand side. This enumeration must be ordered so that for

all 1 ≤ i ≤ n, either the source of ei is the root node, or ∃j. 1 ≤ j < i∧s(ei) =

t(ej). Any edge enumeration satisfying the property can be chosen. Due

to the reachability and rootedness side-conditions on transformer functions

(given in section 9.2.3) at least one such edge enumeration must exist.

(See Chapter 3 and especially §3.2 for more on graph transformation

algorithms which make use of edge enumerations, and on conditions ensuring

the existence of edge enumerations.)

The translation to C also assumes the existence of two typing functions

tl and tr. These take a node name and return the node-type of a node in,

the left- and right-hand sides of the transformer function respectively, as

given by the node-type declarations.

216

C

u
wwwwwwwwwv

transformer

F C (S *G, A) {
left(Nl)

{ L1;. . . Ln; }
right(Nr)

{ R1;. . . Rm; }
}

}
���������~

=

bool F (S *G, A) {
// Matching

[C struct *v n = NULL;]v∈Nl∪Nr

[C union *v u = NULL;]v∈Nl∪Nr

K s = G->root;

K u = K s->node;

[LJLK](s.e=>i)∈{L1...Ln}

[if (x s == y s)

return FALSE;](x,y)∈Pairs

// Dangling Condition

[if (d s->indeg != CL(d))

return FALSE;]d∈Nl/Nr

// Rewriting

[free(*d u); free(*d s);]d∈Nl/Nr

[p->type = typecode(tr(p));]p∈Retype

[MJtr(a), aK]a∈Nr/Nl

[RJRK]R∈{R1...Rm}

[n->indeg
= n->indeg + (CR(n)− CL(n));]n∈Nr

return TRUE;

}

where:
K is the root-typed node name
CL(i) = | {(s, e) | (s.e=>i) ∈ {L1 . . . Ln}} |
CR(i) = | {(s, e) | (s.e=>i) ∈ {R1 . . . Rm}} |
Retype = {p ∈ Nl ∩ Nr | tl(p) 6= tr(p)}
Pairs = {(x, y) ∈ Nl × Nl | x 6= y}

LJ S.E => T K =

T s = S u->tl(S).E;
if (T s->type != tl(T))
return FALSE;

else if (T u == NULL)

T u = T s->node ;

else if (T u != T s->node

)

return FALSE;

RJ S.E => T K = S u->tr(S).E = T s;

RJ S.V = X K = S u->tr(S).V = X;
RJ X = S.V K = X = S u->tr(S).V;

Figure 10.5: Translation from CGRS to C for transformers.

217

int tree_goleft(struct tree *t) {

bin_struct *rt_s = NULL;

bin_struct *n1_s = NULL;

bin_struct *n2_s = NULL;

bin_union *rt_u = NULL;

bin_union *n1_u = NULL;

bin_union *n2_u = NULL;

rt_s = t->root;

rt_u = rt_s->node;

n1_s = rt_u->treeroot.aux;

if (n1_s->type != BRANCHNODE)

return FALSE;

else if (n1_s == NULL)

n1_u = n1_s->node;

else if (n1_u != n1_s->node)

return FALSE;

n2_s = n1_u->branchnode.l;

if (n2_s->type != BRANCHNODE)

return FALSE;

else if (n2_s == NULL)

n2_u = n2_s->node;

else if (n2_u != n2_s->node)

return FALSE;

if (rt_s == n1_s) return FALSE;

if (rt_s == n2_s) return FALSE;

if (n1_s == n2_s) return FALSE;

(rt_u->treeroot).aux = n2_s;

(n1_u->branchnode).l = n2_s;

return TRUE;

}

Figure 10.6: Source code produced from the transformer function
tree goleft.

218

The function constructed by C[[−]] simulates matching of the left-hand

side using a set of matching variables. For each named node n on the left-

hand side, variables n s and n u are declared. The aim of the matching code

is to assign to each pair of variables the location of a node-pair such that all

of the left-hand side variables together correspond to a matching morphism

for the left-hand side.

The function first assigns NULL to all of the matching variables. It then

begins matching by assigning to the root node variable pair the location

pointed to by the root field of the shape structure. If the structure is a

valid shape structure corresponding to a rooted graph, then the root of the

structure must exist. When the root node-pair has been attached to the

corresponding variable, the non-root matching process is generated by the

L constructor function

Matching proceeds by following edges outgoing from previously matched

nodes, starting with the root. Edges are matched in the order that they ap-

pear in the edge enumeration. By the construction of the edge enumeration

no node can occur as the source of an edge before it occurs as a target of

some edge. As all nodes in the left-hand side of a transformer are reachable

from the root, each node will eventually be matched by this process, unless

matching fails.

In normal graph transformation, this kind of incremental graph matching

may require backtracking. However, matching for a transformer function is

deterministic for the reasons outlined in §9.2.1, so if matching fails at any

edge, then no matching morphism exists and the whole process fails.

Matching of an edge starts by selecting the already-assigned variable for

the source node’s node-union. It then assigns to a the target variable the

location held in the outgoing edge field for the source node-union. There

are then three possible cases:

1. The target structure may be of the wrong node-type. This is checked

by comparing the expected type-code (retrieved using the typenum

function) to the type field of the target. If the type-code is not correct,

the match fails.

2. The matching union variable may be NULL. This shows that this left-

hand side node has not been previously matched. In this case, the

matching variables are assigned the value of target.

219

3. The matching union variable may have been assigned previously during

the matching process. This occurs when two edges in the left-hand side

point to the same node. Both edges will be followed when matching,

but only the first results in an assignment. The matching process

checks by comparison that the current edge points to the same node-

pair as the stored value held in the variable. Otherwise the match

fails.

The edge n1.l => n2 in tree goleft results in the following code. This

code first assigns the value held in n1 u->branchnode.l to the variable n2 s.

It then checks the three possible cases using an if statement, and responds

appropriately depending on the value held in the matching variable.

n2_s = n1_u->branchnode.l;

if (n2_s->type != BRANCHNODE)

return FALSE;

else if (n2_u == NULL)

n2_u = n2_s->node;

else if (n2_u != n2_s->node)

return FALSE;

Once all nodes of the left-hand side of a transformer have been matched

to corresponding matching variables, the function checks by comparison that

the values in the matching variables are pairwise-distinct. This corresponds

to the requirement that a matching morphism must be injective.

The dangling condition is then checked for any nodes that are removed

by the rule. As discussed Section 10.2.1, given a matching morphism h the

dangling condition can be checked for a left-hand side node n by comparing

the number of incident edges to the n in the left-hand side graph to the

number of edges incident to the host-graph node hv(n). The same method

is used to checking the dangling condition for a set of matching variables.

The code used to check the dangling condition for a node n1 is as follows,

if the number of incoming edges according to the left-hand side is 1. (This

example is not taken from tree goleft because no nodes are deleted in

tree goleft.)

if (n1_s->indeg != 1) return FALSE;

Once a set of matching variables satisfying the dangling condition have

been constructed, the node-pairs identified by the matching variables are

220

modified to match the right-hand side of the transformer function. Five

kinds of update are performed: (1) node deletion, (2) node retyping, (3)

node creation, (4) edge construction, and (5) updating auxiliary data. The

order is important: nodes must be constructed before their edges can be

constructed.

Node deletion uses the free operator in C. Nodes can be safely deleted

because the dangling condition ensures that no dangling edges will be created

in the shape-structure.

Node-pairs are retyped (the equivalent of relabelling nodes in a graph

transformation rule) by updating the type field of their node structure. The

side-conditions on transformer functions described in Section 9.2.3 ensure

that when a node is retyped, all the edge-fields required by the signature

will also be added.

New nodes are constructed using the C allocation function malloc, and

their auxiliary data is then updated. The code for node allocation and ini-

tialisation used here is the same as that used in the definition of a constructor

function in §10.2.2. Both use the code-generation functionM[[−]].

Finally, all edges in the right-hand side are created (or possibly recreated

if they already existed on the left-hand side) by assigning new values to the

pointer fields in the right-hand side node-pairs. The indeg fields of all

right-hand side nodes are updated based on edges added and deleted by the

transformer. In the tree goleft example, the n2 node has its incoming

degree increased by one, to reflect the new incoming root pointer.

n2_s.indeg = n2_s.indeg + 1;

The return value of the transformer depends on the success or otherwise

of the matching process. If matching fails or the dangling condition is not

satisfied, the transformer returns FALSE and the shape structure passed to

the function is left unmodified. Otherwise the shape structure is updated

and the function returns TRUE to indicate that it has succeeded.

10.3 Syntax and semantics of µC

We want to show that the extraction function G produces rules that correctly

model the operational semantics of transformer functions produced by C. To

prove this correctness property, we need a formal operational semantics for

221

prog ::= statement∗

statement ::= if (condition) operation else operation |
operation

operation ::= location = term; | var.field = val; |
return val ; | free(* var);

condition ::= location == val | location != var |
val != int

term ::= location | malloc(sizeof(cons))

location ::= var | var->field | var->field.field

val ::= var.field + int | int

Figure 10.7: Abstract syntax of µC.

transformer functions. The operational semantics of a CGRS transformer

function is defined by mapping it to a corresponding C function. Unfortu-

nately, C’s standard operational semantics is given informally. There is no

widely-accepted formally-defined operational semantics for C.1

Our solution is to define a micro-semantics for C, based on [48]. For

reasons of simplicity this semantics covers only a very small fragment of C

that we call µC. We define an operational semantics for enough of C to im-

plement transformer functions, while avoiding the complexity of a complete

C semantics. Any full semantics of C should conform to our semantics over

the domain of µC. Consequently any correctness results derived from the

semantics for µC will carry over to the full semantics for C.

The concrete syntax of µC is given in Figure 10.7. The sets of µC

identifiers var, const and field are defined as members of the language of

strings Σ+.

The control-flow operators available in C are mostly omitted from µC.

The fragment includes an if-else construct, but omits loops, case state-

ments and procedure calls. Programs in µC are assumed to model blocks

of C that are inside function definitions (or inside the standard main()

function). For this reason, µC programs can return values. The fragment

includes a return keyword that terminates execution and gives the whole

program a return value.

The only kind of primitive value that µC permits is the integer type. As

1Full formal semantics have been proposed, such as [37] and [61]. These semantics for
C are quite complex, and so too difficult to use in our proof of correctness.

222

with all the restrictions on µC, this is intended to reduce the complexity of

the semantics. The proof results given in Section 10.5 should still hold even

if the semantics was extended to permit more primitive types.

µC’s memory model consists of a set of variables, and a heap. The heap

consists of locations of two kinds: structs and unions. Structs are defined by

a type-name and a set of field names. Unions associate fields with structure

types. Unlike general C, unions in µC are assumed to only have struct-

typed fields. Heap locations are integers, so integer values can be used as

references to heap locations.

µC restricts C’s syntax for accessing heap data so that it is possible to

distinguish syntactically between dereferencing a field of a struct not held

in a union and dereferencing one held in a union. The first case is written

var->field, while the second is written var->field.field. In full C, these cases

are distinguished semantically, at run time. That is, the same syntax can

have a different effect depending on the type of the pointer. However, the

heap-access cases permitted in µC should have the same effect in correctly-

typed C.

µC omits variable and type declarations. The semantics assumes a fixed

set of defined types and defined variables. This reduces the complexity of

the semantics. C’s variable and type declaration mechanism is quite simple

however, so µC could easily be extended to cover such declarations.

We assume that we have a pre-processor that can replace predefined

strings with other strings. Such macro values are written in all capitals,

following the normal C convention. We assume that we have defined the

standard values TRUE as 1 and FALSE as 0.

The µC semantics is defined in the structural operational style [60]. This

style simplifies some of the proofs in Section 10.5 by exposing the operational

details of execution.

The semantics of µC constructs manipulate states, which are defined over

a type schema. A type schema defines the field-names for µC structs, and

associates union fields with struct types. Type schemas are defined using

the following sets of primitive elements: A set Var of variable names. A set

Uni of union type names. A set Str of struct names. A set Loc ⊆ Int of

locations. A set of field names Fld used to index the fields of unions and

structures. The set of types Type is defined as Str ∪Uni .

Definition 10.3 (µC type schema). A type schema τ = 〈τu, τs〉 is composed

223

of two functions. The partial function τu : Uni ×Fld ⇀ Str associates with

a pair (u, f) of union and field name a corresponding struct name. The

total function τs : Str → P(Fld) associates with a struct name a set of field

names.

Given a type schema τ we can define a µC state. Each state records the

contents of both program variables and the heap, and also keeps track of

running values used during execution of a program.

Definition 10.4 (µC state). A µC state s = 〈rets, ress, vars, typs, f lds〉

consists of the following: rets : Bool, a value recording whether the program

should return; ress : Int, a value used to record the result of evaluating a

construct; vars : V ar ⇀ Int, a partial function mapping variable names to

values; typs : Loc ⇀ Type , a partial function recording the type of memory

locations, assuming they are defined; flds : Str×Fld×Loc ⇀ Int, a partial

function recording the fields for the structure held at a particular location.

Given a state s, we write s[r : n] to replace element r of the state with

n. If r is a function, we write s[r : v 7→ n] to make r(v) = n in the state.

A type schema restricts the permitted states. States that conform to a

type schema are said to be well-typed.

Definition 10.5 (well-typed state). Let τ = 〈τu, τs〉 be a µC type schema.

A memory state s is well-typed with respect to τ if for all locations l ∈ Loc,

either

1. typs(l) ∈ Str and flds(t, f, l) is defined for all f ∈ τs(typs(l)) and

undefined otherwise, or

2. typs(l) ∈ Uni and for some n ∈ Fld , flds(t, f, l) is defined for t =

τu(typs(l), n) and all f ∈ τs(τu(typs(l), n)), and is undefined otherwise,

or

3. typs(l) = ⊥ and flds(t, f, l) = ⊥ for all t, f .

Example 10.4 (µC type schema, state, well-typed state). Let S1 and S2

be struct names, F1, F2, F3 and F4 field names, and U1 a union name. Now

we define a type schema τ as follows.

τ = 〈{〈U1, F1〉 7→ S1, 〈U1, F2〉 7→ S2}, {S1 7→ {F4}, S2 7→ {F3}}〉

224

The following µC state s is well-typed with respect to τ . Note that flds

assigns a structure value to l3, even though it is in fact a union. S3 is the

type that l3 is currently simulating.

rets = ff ress = 0 vars = {x 7→ l1, y 7→ 1, z 7→ l3}

typs = {l1 7→ S1, l2 7→ S2, l3 7→ U1}

flds = {〈S1, l1, F4〉 7→ l3, 〈S2, l2, F3〉 7→ 0, 〈S2, l3, F3〉 7→ l1}

If we replace flds with the following alternatives, the state is no longer

well-typed.

flds = { 〈S1, l1, F4〉 7→ l3, 〈S1, l1, F2〉 7→ 1,

〈S2, l2, F3〉 7→ 0, 〈S2, l3, F3〉 7→ l1}

This definition violates τ by assigning a value to field F4 of location l1,

which is typed S1. This field does not appear in the type schema for the

struct S1. The following state is also not well-typed.

flds = { 〈S1, l1, F4〉 7→ l3, 〈S2, l2, F3〉 7→ 0,

〈S2, l3, F3〉 7→ l1, 〈S1, l3, F4〉 7→ l2}

This definition violates τ by giving location l3 an inconsistent value, by

giving it a value as a field of S2 and of S1. Unions must only have a single

assigned type, even though they can simulate different types at different

times.

The rules of the µC semantics are defined in Figure 10.8, Figure 10.9

and Figure 10.10. The semantics operates on pairs of values 〈c, s〉, where

c is a program and s a state. Except where explicitly stated, reading an

undefined value from any element in the state results in an undefined value

for the rule application.

Figure 10.8 shows the rules of the semantics that deal with control flow

constructs. The rules handling composition and if-else statements are stan-

dard for an SOS semantics, and are based on the rules of the while-language

in [60]. We assume a simple boolean function B that can test equality and

inequality for integers and locations.

Most of the control flow rules are standard, apart from the ret rule.

Programs in µC can use return to break program execution at any time.

Rather than explicitly jump to the end of computation, return writes tt into

the boolean state-value ret. If rets = tt, then the rule comp immediately

applies, which ends the program.

225

[comp1]
〈c, s〉 ⇒ 〈c′, s′〉

〈c cs, s〉 ⇒ 〈c′ cs, s′〉
if rets = ff

[comp2]
〈c, s〉 ⇒ s′

〈c cs, s〉 ⇒ 〈cs, s′〉
if rets = ff

[compr] 〈c cs, s〉 ⇒ s if rets = tt

[ifT] 〈if(t) c1 else c2;, s〉 ⇒ 〈c1, s〉 if B(t, s) = tt

[ifF] 〈if(t) c1 else c2;, s〉 ⇒ 〈c2, s〉 if B(t, s) = ff

[ret]
〈t, s〉 ⇒ s′

〈return t, s〉 ⇒ s′ [rets′ : tt]

Figure 10.8: SOS semantics of µC control flow.

Example 10.5 (µC control flow). Suppose we have a µC state s, typed

according to the type schema given in Example 10.4. The state is defined

as follows.

rets = ff ress = 0 vars = {x 7→ l1, y 7→ 1, z 7→ l3}

typs = {l1 7→ S1, l2 7→ S2, l3 7→ U1}

flds = {〈S1, l1, F4〉 7→ l3, 〈S2, l2, F3〉 7→ 0, 〈S2, l3, F3〉 7→ l1}

Now we apply the semantics to the following program.

if (x = 1) return 1; else return 2;

return 3;

The resulting derivation is as follows.

〈if(x = 1) return 1; else return 2; return 3;, s〉

[comp1], [ifT]⇒ 〈return 1; return 3;, s〉

[ret]⇒ 〈return 3;, s[ret : tt][res : 1]〉

[compr]⇒ s[ret : tt][res : 1]

The if-statement is replaced by its first argument, as x = 1 holds. Then

the statement return 1 is evaluated using the [ret] rule. This immediately

ends the program with the return value 1, skipping the remaining return

statements.

226

[refv] 〈v, s〉 ⇒ s [res : vars(v)]

[refs] 〈v->f, s〉 ⇒ s [res : flds(typs(vars(v)), f, vars(v))]

[refu] 〈v->u.f, s〉 ⇒ s [ress : flds(τu(typs(vars(v)), u), f, vars(v))]

[assnv]
〈t, s〉 ⇒ s′

〈v=t;, s〉 ⇒ s′ [vars′ : v 7→ ress′]

[assns]
〈t, s〉 ⇒ s′

〈v->f=t;, s〉 ⇒ s′ [flds′ : (typs′(v), f, vars′(v)) 7→ ress′]

[assnu]
〈t, s〉 ⇒ s′

〈v->u.f=t;, s〉 ⇒ s′ [flds′ : (k, g, l) 7→ ⊥]g∈F ld, k∈Str/{h}

[flds′ : (h, f, l) 7→ ress′]

where h = τu(typs′(vars′(v)), u)
l = vars′(v)

Figure 10.9: SOS semantics of µC assignment and dereferencing.

Figure 10.9 shows the rules of the semantics dealing with assignment and

dereferencing. Rather than splitting cases semantically, µC distinguishes

syntactically between different kinds of dereferencing of heap locations. The

three different syntactic cases are (1) accessing a variable value, (2) accessing

a struct field referred to by a variable, and (3) accessing a field for a structure

inside a union, referred to by a variable. The semantics provides a [ref] rule

for each of these cases.

Variable access is handled by simple dereferencing of the var state-

function. The other two cases are slightly more complicated. Access to

a struct field uses the typ functions to retrieve the type of the target mem-

ory location and fld to retrieve the contents of the field. Access to a struct

in a union must refer to the type-schema function τu to associate a union

field with a particular structure type. Dereferencing of the structure then

works in much the same way as the struct case.

The semantics also defines an assignment rule for each of these three

227

cases. Three distinct assignment rules are required, rather than a single

rule exploiting the [ref] rules, because of assignment to unions. Unions

in µC consist of fields associated with a particular structure type. The

programmer can write to any of the fields of any of the structures inside

a union, but writing to the field of one structure deletes the fields of any

other structures inside the union. To implement this, the rule [assnu] for

assignment to a structure inside a union makes other structures undefined

(written ⊥).

Example 10.6 (µC assignment). Let s be the same state considered in

Example 10.5. Evaluating a variable assignment gives a simple derivation.

〈x = y, s〉 [refv], [assnv]⇒ s[vars : x 7→ 1]

Assigning to the field of a structure gives a slightly more complex result.

Here the variable x holds a reference to location l1, which is of structure

type S1.

〈x->F4 = 0, s〉 [assnv]⇒ s[flds : (S1, l1, F4) 7→ 0]

Here the variable z holds a reference to location l3, which is of union

type U1.

〈z->F2.F3 = 1, s〉

[assnv]⇒ s[flds : (S1, l3, F4) 7→ ⊥, (S2, l3, F3) 7→ 1]

In this derivation the union type is currently simulating a structure of

type S1, but we assign to it instead through field F2, which is of type S2. This

overwrites flds(S1, l3, F4) with ⊥, as we have assigned to the union through

a different field, forcing it to alter the structure it is presently simulating.

We write (S2, l3, F3) to 1, and so simulate an S2 structure.

The rules of the semantics dealing with the allocation and deallocation

of heap resources are shown in Figure 10.10. These rules are quite simple

because µC’s syntax allows only very restricted forms of memory handling.

Allocation of heap objects in µC can take place only through the application

of malloc and sizeof to an identifier in Str or Uni. This means, for

example, that the allocation of memory objects of arbitrary size cannot

occur. The rule [alloc] for allocation fetches an unused memory location n,

and writes the type of the constructor into the typ function. It then returns

the freshly-allocated memory location n.

228

[alloc]
〈malloc(sizeof(c)), s〉 ⇒ s [typs : n 7→ c] [ress : n]

if typs(n) 7→ ⊥

[free]
〈free(*v), s〉 ⇒ s [typs : vars(v) 7→ ⊥]

[flds : (vars(v), t, f) 7→ ⊥]t∈Type,f∈F ld

Figure 10.10: SOS semantics of µC memory handling.

Similarly, deallocation is severely restricted by the syntax of µC. Deal-

location can only take place by applying the free keyword to dereferenced

variables. The deallocation rule [free] simply writes ⊥ into the state func-

tions typ and fld.

Example 10.7 (µC memory management). Let s be the same state con-

sidered in Example 10.5. Evaluating malloc(sizeof(S2)) assigns the type

S2 to an arbitrary untyped location and writes it into the res value.

〈y = malloc(sizeof(S2)), s〉

[alloc], [assnv]⇒ s[vars : y 7→ l4][typs : S2][ress : l4]

Evaluating free x overwrites the memory location l1 with ⊥, and over-

writes the associated entry in fld with ⊥.

〈y = free(*x), s〉 [free]⇒ s[typs : x 7→ ⊥][flds : (S1, l1, F4) 7→ ⊥]

10.4 Translating from memory states to graphs

We have defined the semantics of transformer functions in both the opera-

tional C domain and the abstract graph transformation domain. However,

the two semantics are defined over different domains. The µC implementa-

tion operates over µC states, while graph transformation rules operate over

graphs. In this section we define a translation from states to graphs. We

first define formally what is meant by a ‘shape structure’ in a state, and then

define a function β that translates from a shape structure to a corresponding

graph2

2The function β is so-named due to the similarity between it and the function α from
separation logic heaps to graphs defined in Chapter 6, Def. 6.10. Both function map from
classes of pointer-structures to classes of graphs, although their details are quite different.

229

We begin by defining precisely the states and graphs that we are in-

terested in. Shapes in CGRS do not correspond to unrestricted pointer

structures; Rather they define classes of shape structures. These are por-

tions of the heap, reachable from a single container structure, that have a

particular form corresponding to a rooted graph.

Assumption 10.1. In the following section, let σ be an abstract declaration

(Def. 10.1). Let S be the name of the declared shape, and let G be the name

of the signature. Let N1, . . . , Nm be the names of the node-types defined in

σg. For each node Ni, let ENi
be the set of edges assigned for node Ni and

VNi
the set of value fields. Let R be the name of the root node type, and

VR the set of edge fields for R.

Definition 10.6 (σ-schema). A type schema τ is a σ-schema if: (1) dom(τs) =

{N1, . , Nm} ∪ {G, S struct}. (2) For each struct Ni ∈ {N1, . . . Nm},

τs(Ni) = LNi
∪VNi

. (3) For each struct Ni ∈ {N1, . . . Nm}, τu(S union, Ni) =

Ni. (4) τs(G) = { root}. (5) τs(S struct) = {indeg, type}, node}.

Example 10.8 (σ-schema). Let σ be the abstract declaration we defined

in Example 10.1. This gives struct names tree, bin struct, treeroot,

branchnode and leafnode, the single union name bin union, and field

names root, top, aux, l, r, treeroot, branchnode, leafnode, indeg, type,

node and val.

We define the corresponding σ-schema τσ = 〈τ(σ,u), τ(σ,s)〉 as follows.

τ(σ,u) = { 〈bin union, branchnode〉 7→ branchnode,

〈bin union, leafnode〉 7→ leafnode,

〈bin union, treeroot〉 7→ treeroot, }

τ(σ,s) = { tree 7→ {root},

bin struct 7→ {indeg, type, node},

treeroot 7→ {top, aux},

branchnode 7→ {l, r, val}

leafnode 7→ { } }

Definition 10.7 (σ node-pair). Let sσ be a well-typed state with respect to

a σ-schema τσ. We call any pair of heap-locations consisting of an S struct-

typed struct and an S union-typed union a σ node-pair if (1) the node

field of the structure points to the union, and (2) the type of the struct

230

recorded in the union corresponds to the type-code recorded in type-field of

the S struct-typed struct.

A node-pair is a total node-pair if all of the edge-fields of the struct

inside the union are defined and point to node-pairs. The set of child node-

pairs from a particular node-pair is the set of node-pairs pointed to by the

edge-fields of the node-pair. The reachable structure from a node-pair is the

transitive closure of the child relation on the node-pair.

Example 10.9 (σ node-pair). The following definitions of typ and fld for

some state s conform to the σ-schema τσ defined in Example 10.8.

typ = { l1 7→ bin struct, l2 7→ bin union}

fld = { 〈bin struct, l1, indeg〉 7→ 0, 〈bin struct, l1, node〉 7→ l2,

〈bin struct, l1, type〉 7→ typecode(branchnode),

〈branchnode, l2, l〉 7→ l4,

〈branchnode, l2, r〉 7→ l5, 〈branchnode, l2, val〉 7→ 0 }

The locations l1 and l2 in the state contain a node-pair encoding a

branchnode. Other locations are undefined.

Definition 10.8 (σ-structure). A heap location in sσ is a σ-structure if

(1) the location holds a struct of type G, (2) the reachable structure for

this struct’s root pointer consists entirely of total σ node-pairs, and (3)

the indeg field for any node-pair in the reachable structure is equal to the

number of edge-fields in reachable node-pairs that point to this node-pair.

Example 10.10 (σ-structure). We represent unions and structs graphically

as follows. This example represents a branchnode node-pair.

S branchnode

val: 0

U bin_unionS bin_struct

indeg: 0

type: branchnode

node

Here structs are represented by S-labelled boxes, and unions with U-

labelled boxes with S-annotations showing which struct the union is simu-

lating. Non-edge fields are shown explicitly. Edge fields are shown as edges

between nodes, as with node shown above.

Using this notation, Figure 10.11 shows a larger example of a structure at

location k. This structure is defined using the σ-schema defined in Example

10.8. In this structure, the indeg fields of the nodes are correct and all

231

S branchnode

val: 0

U bin_union

S bin_struct

indeg: 2

type: branchnode

node

auxtop

S branchnode

val: 0

U bin_union

S bin_struct

indeg: 1

type: branchnode

node

S leafnode

U bin_union

S bin_struct

indeg: 1

type: leafnode

node

l r

S leafnode

U bin_union

S bin_struct

indeg: 1

type: leafnode

node

S leafnode

U bin_union

S bin_struct

indeg: 1

type: leafnode

node

S tree

root

l r

k:

S treeroot

U bin_union

S bin_struct

indeg: 0

type: treeroot

node

root

l1:

l2:

Figure 10.11: Large σ-structure conforming to the σ-schema τσ defined in
Example 10.8.

232

reachable locations are node-pairs, which means this structure is a valid

σ-structure.

In Section 10.1 we defined the graph signature Σσ resulting from a CGRS

shape declaration σ. A graph is called a σ-graph if (1) it is a Σσ-graph and

(2) there exists exactly one node with root label R.

We have now defined for a shape declaration σ both a class of σ-structures

that exist in C states, and a class of corresponding σ-graphs. These σ-

structures form the domain for transformer functions. Our mapping be-

tween the domains of states and graphs therefore operates only on these two

heavily-restricted domains.

The relationship between the two is defined by the mapping function βσ,

derived from the CGRS signature declaration σ. This function takes as its

input a state s over σ-schema τσ and a σ-structure l in s, and constructs

a corresponding σ-graph βσ(s, l). Intuitively, the βσ function maps heap

locations to graph nodes, node-pairs to nodes, and edge fields to edges.

Definition 10.9 (βσ). Let s be a state over the σ-schema τσ. Let l ∈ Locs

be the heap-location of some σ-structure, and let r ∈ Locs be the location

pointed to by the struct’s root field. Then graph βσ(s, l) is constructed as

follows:

1. Construct a node v for every heap location n holding node-pairs in

the reachable structure from the root field of r. v is labelled with

the type recorded in the type field of the node-pair. This is deter-

mined using the inverse of the type-code function typenum(−) de-

scribed in §10.2.1. In other words the label function lV (b(n)) has the

value typenum−1(fld(n, Ss, type)).

2. Let v1,v2 be nodes corresponding to locations n1 and n2. If the field

f of the node-pair at n1 is defined and points to n2, then an edge e

labelled f exists from v1 to v2.

Example 10.11 (βσ). Applying βσ to location k in the σ-structure de-

scribed in Example 10.10 gives the following Σσ graph.

233

L

��
B L

rl

B

top aux

1

2

As usual branchnode and leafnode are abbreviated to B and L, and

the root node is shown as a small grey node. The nodes tagged with 1 and

2 correspond to nodes l1 and l2 in the σ-structure.

10.5 Correctness of translations

In this section we prove two main correspondence results for C[[−]] and G[[−]].

First in §10.5.1 we show that the constructor functions C[[−]] produced from

a shape declaration σ constructs a shape-structure that corresponds to the

accepting graph defined in σ. Then in §10.5.2 we show that the graph trans-

formation rule constructed by applying G[[−]] to a transformer declaration

correctly models the transformer implementation produced by G[[−]].

10.5.1 Correctness of constructor functions

The correctness requirement for constructors is as follows. Let s be a state

and σ a shape declaration with name S. Let s′ be the result of applying the

constructor function in state s, and let l be the return value of the function

in s′. For the constructor to be correct, it must be true that the graph

βσ(s′, l) is isomorphic to Accσ , the accepting graph defined from σ, and that

no other shape structures are altered or created by the constructor function.

Theorem 10.1. Let σ be a CGRS shape declaration. The corresponding

constructor newgraph S defined by C[[σ]] always returns a shape-structure l

in state s such that βσ(s, l) is isomorphic to Accσ.

Proof. Let σ be a CGRS shape declaration with shape name S in program

P , and let newgraph S be the constructor defined from σ in the resulting

C program C[[P]]. Let Accσ be the accepting graph constructed from σ by

G[[σ]]. Let s be a µC state. Let s′ be the state resulting when newgraph S is

executed in state s, and l the return value of the function. Let Gβ = βσ(s′, l).

234

The graph Gβ is constructed from all the node-pairs reachable from the

root location. So to show that Gβ is isomorphic to Accσ we show that for

every node a node-pair is constructed, and show that the constructed nodes

constitute the reachable structure from the root.

Suppose in the accept block there are defined node names V, W, . . . ,

Z. Then in the resulting constructor, C[[−]] declares corresponding variables

V s, W s, . . . , Z s and V u, W u, . . . , Z u. Each declared node V has the

following associated code, constructed by the semantic function M[[−]].

V s = malloc(sizeof(S struct));

V u = malloc(sizeof(S union));

V s->node = V u;

V s->type = typenum(T);

V s->indegree = 0;

By appeal to the [assnv] and [alloc] rules, the two malloc assignments

results in a node-pair. So, at the end of these assignments, for each declared

node V there exists a variable V s pointing to the struct of a node-pair and

variable V u pointing to the union. By appeal to the [assnv] rule, we now

can see that the type field of each node-pair corresponds to the type of the

node in Accσ.

We now show the edges of the accepting graph exist. Each edge state-

ment results in the following code for node called V:

V u->tr(V).E = T s;

T s->indeg = T s->indeg + 1;

In the resulting state, by appeal to the [refv] and [assnu] rules, the E

field of node-pair V must point to node-pair T. As each edge statement also

results in an edge in graph Accσ between nodes V and T, the bijection b

satisfies the third condition, in that for each field in the corresponding graph

there will exist an edge between the two corresponding nodes with label E.

No matter what the structure of the accept block, for a shape called S,

the constructor function ends execution with the following code.

new = malloc(sizeof(S));

S->root = R s;

return new;

235

G G′

s, l s′, l

G[[r]]

C[[r]]

βσ βσ

Σσ-total graphs

µC state

=

Figure 10.12: Correctness requirement for C with respect to G and βσ.

By the definition of the [assnv] and [alloc] rules, in the resulting state the

variable new points to a fresh S-typed memory location. The constructor

assigns the root field the location of the root-typed node-pair. Therefore

βσ(s′, l) is isomorphic to Accσ.

10.5.2 Correctness of transformer functions

The correctness requirement for transformers is as follows. Let r be a trans-

former function. Then C[[r]] is the fragment of µC code that defines by

implementation the transformer function’s operational semantics. G[[r]] is

the corresponding graph transformation rule extracted from the transformer

function. We write application of the rule r to graph H as r(H), and appli-

cation of transformer function t to shape-structure l in state s as t(s, l).

The mapping function C[[−]] is correct with respect to G[[−]] and βσ if

for function r, state s and σ-structure l in s, the application of the code

fragment C[[r]] to state s has the same structural effect, modulo βσ(−,−),

as applying the corresponding graph transformation rule to graph βσ(s, l).

Formally, we require that G[[r]](βσ(s, l)) = βσ(C[[r]](s, l), l). Equivalently, the

diagram in Figure 10.12 must commute.

We prove this correctness result in three stages. The first part of the

proof shows that the ‘matching’ portion of C[[r]] constructs a set of matching

variables that correspond to the matching morphism constructed by the

left-hand side of the graph transformation rule G[[r]]. The second part shows

that code checking the dangling condition fails if and only if the dangling

condition does not hold. The third part proves that the ‘rewriting’ portion

of C[[r]] performs the same structural graph rewrite as rule G[[r]]. We ignore

rewrites applied to value fields in the transformer as they have no effect on

the correctness of the extraction function.

236

The first stage of the proof consists of proving that the portion of the

code in Figure 10.5 labelled ‘Matching’ constructs matching variables that

correspond to a matching morphism. This requires a notion of correspon-

dence between a variable set and a morphism. Intuitively, a set of variables

correspond to a morphism if each variable corresponds to a node in the mor-

phism domain, and the value held in the variable points to a the associated

location in the range.

Definition 10.10 (morphism correspondence). Let s be a state and l the

location of a σ-structure in s. Let G = βσ(s, l) be the resulting Σσ-graph,

and b : Locs → VG the bijection between locations and graph nodes that

defines βσ(s, l). Let v1, . . . , vn be a set of variables in s. Let r = 〈L← K →

R〉 be a graph transformation rule with n nodes on its left-hand side. Let

t : V ar→ VL be a partial bijection associating variables with left-hand side

nodes. Let h : L→ G be an injective morphism between L and G. Then we

say that variables v1, . . . , vn correspond to morphism h in state s, if for all

i such that 1 ≤ i ≤ n, b(vars(Vi)) = hV (t(Vi)).

Parallel edges are forbidden by the definition of a Σσ-graph, as outgoing

edges must be distinctly labelled. As a result, a set of variables in state s

that correspond to a morphism h : L → G suffices to uniquely define the

morphism.

Example 10.12 (morphism correspondence). Let s be a state containing

the σ-structure given in Example 10.10. This structure contains locations l1

and l2. Applying βσ to this σ-structure gives the graph G shown in Example

10.11, with nodes v1 and v2 the nodes with tags 1 and 2.

We also have the following left-hand side graph L. Nodes v′1 and v′2 are

respectively the nodes with tags 1 and 2.

B

top
1

2

Suppose we have variables x1 and x2, and mapping function t = {x1→

v1, x2 → v2}. Let h : L→ G be a partial morphism defined as hV = {v′1 7→

v1, v
′
2 7→ v2} and hE = ∅. If s(x1) = l1 and s(x2) = l2, then x1, x2

correspond to h in the state s.

237

Proposition 10.2. Let T be a transformer function. If there exists a match-

ing morphism between the G[[T]] and βσ(s, l) then applying the matching code

from C[[T]] to a σ-structure l in s results in a set of matching variables cor-

responding to the morphism. Otherwise the code exists with return-value

FALSE.

Proof. Let N1, . . . , Nm be the names of the nodes declared in T . Each node

n declared in the left-hand side of transformer function r results in (1) a pair

of variables n u and n s declared in function C[[T]], and (2) a node in the

left-hand side of rule G[[T]]. This relationship implicitly defines a bijection b

between variables and left-hand side nodes.

Let s be a state and l the location of a σ-structure in s. Let graph Gβ

be the graph constructed by βσ(s, l). Let L be the left-hand side graph of

the rule C[[T]].

We prove that the correspondence holds by induction on the size of

the partially-constructed matching morphism hi. In the base case only a

single root node exists. Let R be the name of the root node, and G the

shape-name passed to the transformer. The matching code begins with the

following assignment.

R s = G->root;

R u = R s->node;

By the definition of a σ-structure, the root field must point to a root-

typed node-pair. By appeal to the [assn] rules, after this code has executed

the single variable R s points to the root-typed node-pair. This variable

alone must therefore correspond to a partial morphism h0 that has a single-

ton domain consisting of the root-labelled left-hand side node r, with h0(r)

pointing to the root-labelled node in the graph Gβ .

For each declared node-name in the left-hand side, the function C[[−]] con-

structs code to incrementally extend the matching morphism by an edge-field

at a time. Let e1, . . . , en be the sequence of left-hand side edge declarations

defined by the edge enumeration.

Let us assume that edges e1, . . . , ei have been matched. Let V1, . . . , Vm

be the source and target nodes of these edge declarations. Assume variables

V1 s, . . . , Vm s correspond to partial morphism hi that has as its domain

the nodes of the left-hand side graph related to V1, . . . , Vm by bijection b.

238

Let S.E => T be the next edge declaration ei+1 in the enumeration. This

results in the following code-fragment.

T s = S u->tl(S).E;

if (T s->type != typenum(tl(T)))

return FALSE;

else if (T u == NULL)

T u = T s->node ;

else if (T u != T s->node)

return FALSE;

Let V1, . . . , Vp be the sources and targets of the edge declarations e1, . . . , ei.

We now show that at the end of this code fragment either (1) variables

V1 s, . . . , Vp s correspond to partial morphism hi+1 between the correspond-

ing nodes and edges of the left-hand side graph and the target graph, or (2)

no such extended partial morphism exists and the code returns FALSE.

Because graph Gβ is a Σσ-graph, there must exist exactly one edge with

source hi(b(S)) and label E. There are therefore two possible failure-cases in

extending the domain of hi by the edge corresponding to edge-declaration

ei+1. (1) The target node of the edge in Gβ is of the wrong type. (2)

The target of the edge is already in the domain of h0, but the edge in Gβ

points to the wrong node. Otherwise the match must succeed. We show

that matching fails and the code returns FALSE if cases (1) or (2) hold, and

succeeds otherwise.

In case (1), the code fails if the type field of the target node-pair is of

the wrong type. By the definition of the typenum(−) function, this shows

that extending hi along this edge reaches a wrongly-labelled node in graph

Gβ .

In case (2) both the edge source and target have been matched in hi.

The code will fail if the edge-field of the node-pair in S u does not point to

the node-pair in T s. This occurs exactly if no edge exists between the two

nodes in the resulting graph Gβ. By appeal to the fact that the source of

the new edge has already been matched, the code will return FALSE if no

field exists labelled E between the heap locations held by S s and T s.

Otherwise the code writes the value into the target variable for the node-

declaration. By the definition of βσ, there must exist a corresponding node

in graph Gβ and edge labelled E between the source and target, so the new

variable set V1 s, . . . , Vp s corresponds to morphism hi+1.

239

This suffices to show that at the end of the matching code we have a

total morphism h : L → G. The final section of the matching code ensures

that the morphism is injective, by comparing the values held in all of the

variables. The result is that the code fails if any of the variables point to

the same node-pair, which occurs if and only if the corresponding morphism

is non-injective.

The second portion of the code in Figure 10.5 (marked by the label

Dangling Condition) checks that the dangling condition is respected by

the constructed morphism.

Proposition 10.3 (checking the dangling condition). Let s be a state re-

sulting from the matching code in C[[T]] with σ-structure at location l, and let

v1, . . . , vn be variables in s corresponding to morphism h for graph βσ(s, l).

Then C[[T]] returns FALSE in s if and only if G[[T]] violates the dangling

condition in βσ(s, l) with matching morphism h.

Proof. Let s be a σ-state and v a σ-structure. By the definition of a σ-

structure, the indeg field of a node-pair in the σ-structure is equal to the

in-degree of the corresponding node in the graph βσ(s, v).

The following code is generated for node V declared in the left-hand side

graph if the corresponding node n ∈ L in rule r = 〈L ← K → R〉 is (1)

deleted by the rule, and (2) has in-degree c in L.

if (V s->indeg != c) return FALSE;

This code fragment will return FALSE if the in-degree of the node h−1(n)

in graph βσ(s, v) differs in degree from the node n in L. This holds if and

only if the dangling condition fails for the corresponding node. As the code

is generated for all deleted nodes, the result is that the dangling condition

is checked for the whole rule.

We can now prove that the extraction function G produces from a trans-

former function T a graph transformation rule that corresponds to the op-

erational semantics of the function defined by the implementation function

C.

Theorem 10.4 (correctness of translation). Let s be a σ-state that includes

a σ-structure l. Let T be transformer function. Applying C[[T]] to l in s using

240

the semantics given in Section 10.3 results in state s′ such that βσ(s, l)⇒G[[r]]

βσ(s′, l), or will return false if no such derivation exists.

Proof. Let Gβ be the graph βσ(s, l). We have shown in Proposition 10.2

and Proposition 10.3 that the values written into variables by the matching

and dangling portions of C correspond to an injective matching morphism

h : L → Gβ that satisfies the dangling condition. To show that the code

C[[T]] has the same structural effect as G[[T]] therefore requires only to prove

the section of code labelled ‘Rewriting’ performs rewrites on the state that

correspond to the graph rewrites performed by graph transformation rule

G[[T]].

The rewriting code of C first generates code to delete nodes. The code

consists of a pair of calls to the free function. By the [free] rule, in the

resulting state the corresponding node-pair will be deleted, with the result

that the same nodes will be deleted in the graph. Note that incoming

edges are deleted by the edge rewriting code, meaning that reachability

is preserved.

The code then retypes node-pairs by writing into the type field. This

has the result that the node labels for the corresponding nodes in Gβ are

modified to conform to the new type. The rewrite rule has the same effect

when relabelling nodes.

The code then constructs new nodes. This code is generated using the

function M[[−]] used in defining the constructor function, so by the same

argument used in Theorem 10.1 this code successfully generates a node-pair

of the required type with undefined outgoing edges.

The rewriting code of C then reassigns all of the fields present in the

right-hand side of the transformer function. In the domain of graph trans-

formation, if an edge f exists between nodes l1 and l2 in the left-hand side,

then in the resulting graph G′ there must be an edge between the corre-

sponding nodes matched by the morphism. The code generated is of the

form:

S u->tr(S).E = T s;

By Proposition 10.2, the source and target variables correspond to the

source and target in the graph Gβ . By the rules of the µC semantics, the

above code will result in an edge-field between node-pairs matched by the

morphism, as required by the left-hand side. Therefore, in the corresponding

241

graph, there will exist edge between the corresponding nodes matched by

the morphism.

Finally, the code updates the indeg fields of all of the right-hand side

nodes to reflect the updated indegree counts. By the definition of C[[−]] the

indegree is altered by the number of edges deleted and generated by the

graph update, so the σ-graph property is maintained. This auxiliary data

is not present in the graph Gβ.

We have shown that the code will exit with FALSE if it fails to construct

a variable set corresponding to a matching morphism. By the structure of

the constructed code, it is not possible for it to exit while executing the

rewriting portion of the function until the final return TRUE statement.

This completes the proof.

10.6 Shape safety guarantees in CGRS

Let us assume that
C
=⇒ is a semantics of full C, and let

µ
=⇒ be the µC semantics

defined in 10.3. Given a C memory state s, we extract a µC state sµ by

preserving any structs and unions that include only integer and pointer

fields, and turning all other memory locations to undefined values. We

assume that the semantics of µC corresponds to full C, in the sense that for

any valid piece of µC syntax P , 〈P, s〉
C
=⇒ s′ if and only if 〈P, sµ〉

µ
=⇒ s′µ.

Definition 10.11 (shape safe location). Let σ be a shape declaration in P .

Let s be a state in full C and let sµ be the corresponding µC state. Let l

be a location in s that is the location of a σ-structure in sµ. Then we say

that l is shape-safe in s if the graph βσ(sµ, l) is a member of L(G[[σ]]), the

language of graphs defined by the graph reduction system G[[σ]].

Definition 10.12 (shape safety preservation). Let P be a C program, and

let σ be a shape declaration, and let l be a location in s that is shape-safe

with respect to σ. We say that P preserves shape safety if every state s′

such that a derivation 〈P, s〉
C
=⇒

∗
s′ exists is shape-safe with respect the σ.

In this section we assume a sound shape-checking algorithm that deter-

mines whether a graph-transformation rule is shape-preserving with respect

to a GRS. That is, given a GRS G and a graph transformation rule r, if the

algorithm returns tt, then L(G) is closed under r. The problem of shape

checking is known to be undecidable even for context-free shapes – see [31]

242

for a reduction of the inclusion problem for context-free graph languages to

shape safety checking. Consequently no general sound and complete shape-

checking algorithm exists.

An example of a shape-checking algorithm is Shape-Check, described

in [3]. See 9.1 for a of this algorithm.Given a shape-checking algorithm, we

can make the following guarantees for CGRS programs.

Theorem 10.5. Shape structures constructed by a CGRS constructor are

shape-safe by construction.

Proof. Let σ be a shape declaration and let P be the constructor defined by

C[[σ]]. As a consequence of Theorem 10.1, applying P in any state results

in a state s and location l such that βσ(sµ, l) is isomorphic to the accepting

graph for G[[σ]]. As a consequence, l is shape-safe in s with respect to σ.

Theorem 10.6. Given a sound shape-checking algorithm, there exists a

sound procedure for checking statically whether the transformer functions in

a CGRS program preserve shape-safety. No general procedure that is sound

and complete exists however.

Proof. Let σ be a shape declaration, and let l be a location in s that is shape-

safe with respect to σ. Let T be a transformer function. As a consequence

of Theorem 10.4, l is shape-safe in the state s′ resulting from applying C[[T]]

to l if and only if G[[T]](βσ(s, l)) ∈ L(G[[σ]]).

As a consequence of this, if the shape checking algorithm verifies that

the rule C[[T]] preserves membership of the language L(G[[σ]]), then function

C[[T]] is guaranteed to preserve shape-safety for shape σ. Conversely, if the

algorithm shows that C[[T]] is not shape preserving, then there exists a state

s and location l that is shape-safe with respect to σ such that l is not shape-

safe in the state s′ resulting from applying C[[T]] to l.

As a result of the undecidability of shape-checking, no sound and com-

plete procedure exists for checking statically whether transformer functions

preserve shape-safety.

Pointer manipulations that are not modelled as transformer functions

cannot be checked by the algorithm, and can potentially violate the shape

membership guarantees. CGRS can therefore only make guarantees of shape

safety in programs that manipulate shape structures only by transformer

functions.

243

10.7 Implementing and optimising CGRS

We have defined the concrete semantics of CGRS by a mapping function

to C. However, our focus in this work has been abstract correctness rather

than concrete implementation, and we have not implemented CGRS in prac-

tice. It should be the subject of future work to develop an implementation,

consisting of a compiler and suite of small test programs.

An implementation will require of a parser for CGRS constructing a

parse tree for signatures, shapes and transformers. From this parse tree the

implementation will then construct C code conforming to the definition of

a transformer function, and a textual representation of the corresponding

graph transformation rules. Haskell may be a suitable language for this

implementation.

The functions produced by the mapping to C are considerably larger than

the corresponding C code. In the case of tree goleft defined in Example

9.4, the resulting code is 35 lines long, with most of the body of the code

consisting of matching code and checks for injectivity. The code is given in

§10.2.3. This compares to 12 lines for the transformer declaration, and 6

lines for the corresponding C code given in §9.4.

This level of code length increase also seems quite typical for CGRS

transformer functions. For the rebalancing transformer rup from §9.3, the

constructed C function is 49 lines long. The transformer is 19 lines long,

and the C code given in §9.4 is 12 lines.

We hope that future work will reduce the size of code produced from

CGRS, by cutting down on redundant checking. It may be possible to

use some of the information in the shape declaration to remove redundant

checks, by eliminating checks that cannot fail in shape members. It may

also be that some redundant checks are already eliminated by the compiler.

A consequence of the lack of an implementation is that CGRS has only

been applied to a small number of toy problems. It should be the subject of

future work to apply CGRS to a wider range of example problems, and refine

the language and verification approach based on this practical experience.

Testing the language in this way will also allow us to compare the speed of

CGRS programs to corresponding C programs.

244

Chapter 11

Other approaches to

shape safety

In this chapter we compare CGRS to other approaches that have been de-

veloped for ensuring the shape safety of C-like programs. We also consider

approaches to specifying classes of graphs based on graph transformation.

11.1 Shape types and structured gamma

The approach used in CGRS is most similar to Fradet’s and Le Métayer’s

work on shape specification using structured gamma [31]. Structured gamma

programs are based on a ‘chemical reaction’ metaphor. Operations consist

of reactions, which act non-deterministically on a structured multiset of tu-

ples. These tuples consist of a type field that restricts the tuple’s arity, and

a fixed number of address fields. These multisets can be seen as representing

hypergraphs, with the addresses as vertices and the tuples as labeled edges.

Structured gamma reactions are know to be equivalent to context-free hy-

peredge replacement rules as defined in §2.3.

The structured gamma approach forms the basis of Fradet and Le Métayer

shape-checking approach. They model pointer structures as structured mul-

tisets, with the properties of structures defined by sets of reactions that gen-

erate sets of multisets. Pointer rewrites are modelled as pattern-matching

rewrites.

This approach is implemented as an extension to C called Shape-C, which

takes a similar approach to implementing the structured gamma approach

245

as we have in CGRS for the SPGT project. Shape-C introduces a special

syntax for defining both pointer structure shape and pointer rewrites. Like

CGRS, it is implemented by a mapping to C.

There are several differences between our approach and that of Shape-C.

Most fundamentally, Shape-C is restricted to shapes specified by context-

free graph grammars. The graph reduction specifications incorporated in

CGRS – even when restricted to polynomial GRSs – allow programmers to

specify non-context-free data structures such as grids and various forms of

balanced trees.

In addition, our approach to transformer functions in the design of CGRS

is quite different. While Shape-C defines a simple syntax for rewrites that

appear inline in programs, in CGRS transformers are defined as functions.

This has the advantage of encapsulating large rewrites away from the main

body of the program.

In Part II of this thesis, we give conditions under which GRSs have an ef-

ficient run-time membership test. We have shown that several of the classes

of graphs defined by graph reduction systems in [4] permit linear-time mem-

bership checking (for example: balanced binary trees, §4.2.1; grid graphs

4.2.2; cyclic lists, Example 4.2). Fradet and Le Métayer, in contrast, do

not consider the efficiency of run-time shape checking. Their reaction-based

approach is equivalent to context-free graph grammars, which in general are

known to have an NP-complete membership problem.

11.2 Specifying structures using logic

Several approaches to specifying the properties of pointer structures are

based on program logics. An example of this is the work on graph types

[49]. These are spanning trees with additional pointers defined by path

expressions; they form the basis of pointer assertion logic [58], a monadic

second-order logic for expressing properties of pointer structures in program

annotations. In addition to a logic, this approach defines a C-like language

for declaring the properties of pointer structures.

Graph types are declared in much the same way as C structure decla-

rations. Nodes in a graph type can have two kinds of outgoing edges: data

fields and pointer fields. A data field can only point to a node that is not

pointed to by any other data field of any other node. In this way, the data

246

type Node = {

data next : Node;

pointer prev : Node[this^Node.next={prev}];

}

Figure 11.1: Graph type for a doubly-linked list node.

fields of a pointer structure form a spanning tree.

Pointer fields, in contrast, can point to any node in the structure. How-

ever, pointer fields are annotated with routing expressions, written in pointer

assertion logic, which express a set of acceptable target nodes. Pointer fields

are used to implement the non-tree properties of a graph structure.

For example, Figure 11.1 shows the graph type for a doubly-linked list.

The tree-shaped backbone of the list is formed by the data field next. The

prev pointer field is marked with the following routing expression:

this^Node.next={prev}

This states that the set of nodes that point to the current node this through

the data field next must consist of the node pointed to by prev.

For verification, routing expressions are mapped to a fragment of monadic

second-order logic: the weak monadic second-order theory of 2 successors.

Hoare triples based on this fragment are decidable over loop-free code us-

ing the MONA tool, described in [44]. Loops must however be explicitly

annotated with invariants in the normal Hoare logic manner.

This approach requires programmers to use quite a sophisticated logic,

but the formalism is still too weak to express some important properties.

Møller and Schwartzbach give a list of shapes that have been verified using

this tool, including threaded trees and non-balanced red-black search trees.

However, balanced structures such as balanced binary trees and red-black

trees are outside the expressive power of pointer assertion logic. In contrast

the GRS approach allows us to specify balanced structures and other non-

context-free shapes.

Another logic that has been the basis of a large amount of work is sepa-

ration logic [46, 69]. This is a logic for shared mutable data-structures that

adds a so-called separating conjunction to the normal operators of first-order

logic. Separating conjunction divides the heap into disjoint regions for which

different logical formulae hold, making it possible to reason locally. The syn-

247

tax and semantics of separation logic are described in detail in §6.1 , so here

we will describe only the approaches to verification that have been developed

based on it.

The main use for separation logic is as the basis of an extension of Hoare

logic that allows local reasoning about programs. Separation logic can reason

about quite complex pointer-manipulating algorithms in a way that would

be difficult in normal Hoare logic. The earliest work on verification based on

separation logic consists of by-hand proofs of small programs, with explicit

annotations of Hoare triples. The Schorr-Waite graph marking algorithm

was verified in [78], a copying garbage collector in [9].

Such by-hand proofs suffer from the same problems of complexity as

Hoare logic. Even small programs can require very large proofs, which can

take a considerable amount of time to write. The Schorr-Waite algorithm

requires a twenty-eight page paper to detail the proof, even though the

program itself is only thirty lines long.

More recent work on separation logic has resulted in the SmallFoot tool

[7], which automatically verifies invariants written in a decidable fragment

of separation logic. The decision procedure used by SmallFoot makes use

of symbolic execution. Recursive predicates other than simple lists must be

added by hand to the tool’s logic, and the inference rules in the tool must

be updated to reflect the semantics of the new predicate.

In comparison with CGRS, Smallfoot has the advantage that it works

over plain C, rather than an augmented extension of C. Smallfoot’s fragment

of separation logic however is less expressive than CGRS’s reduction systems,

in that it operates over a fragment of separation logic similar to the symbolic

heaps used for the Space Invader tool (see below, p. 251.

In addition, even with automatic checking, the correct invariant for ver-

ifying a program can be difficult to discover. Verification also depends

strongly on the selection of recursive predicates. Smallfoot copes well with

invariants defined using list segments, but for more complex structures such

as trees, which CGRS handles quite naturally, the proof system must be

extended by hand to reason about them successfully. The construction of a

correct set of inference rules for a given predicate can present a considerable

challenge.

Other logics have been used to specify the properties of pointer struc-

tures. Alias Logic [14] abstracts away from the presence of a garbage col-

248

lector to reason purely about aliasing. Navigation Temporal Logic [19] uses

temporal reasoning to define all of the possible evolutions of the heap. How-

ever, both of these logics are presented in largely theoretical terms, rather

than as part of a system for verifying pointer programs.

11.3 Shape analysis

Other approaches to shape safety are based on the automatic inference of

the shape properties of pointer structures. Shape Analysis is the major ap-

proach in analysis-based shape safety checking. A shape analysis constructs

by symbolic execution a over-approximated representation of all possible

pointer structures at each point in a program. These structures can then be

analysed for required shape properties.

The initial work on shape analysis uses three-valued logic as an abstract

domain [54]. Concrete structures in this work are represented by logical

structures in two-valued boolean logic with transitive closure. A two-valued

structures are defined from a universe of elements and a set of predicates

that give an interpretation over these elements. Core predicates record the

pointers between elements, while instrumentation predicates record larger-

scale properties, such as reachability.

Three-valued logic extends two-valued boolean logic with a new ‘indefi-

nite’ value. A three-valued structure embeds a two-value structure if there

exists a mapping from the nodes of the two-value structure such that predi-

cates either maintain their value or have value unknown. Intuitively, embed-

ding ‘blurs’ the embedded two-valued structure by mapping from definite

to indefinite values. A single three-valued structure represents the (possibly

infinite) class of two-valued structures embedded in it.

Shape analysis as presented in [54] constructs for each program point a

set of three-valued structures. These structures embed all the possible two-

valued structures that can occur at the program point. The set of structures

is constructed by symbolic execution over the set of structures. First the

structures are focussed, breaking them into cases with definite values for

a so-called focus formula. Then the structures are updated according to

a program semantics. Finally the resulting set of formulas is coerced to

remove contradictory structures.

Three-valued shape analysis has been implemented in a tool called TVLA

249

[55, 53]. A considerable amount of effort has been focussed on improving

the speed of TVLA’s analysis. A recent paper claimed a 50-fold increase

in speed over earlier versions of the tool [12]. Other work has developed

interprocedural version of shape analysis for improved modularity [70, 47].

Shape analysis differs from CGRS in its general approach to verification.

CGRS defines a new class of program construct which are more suitable for

shape checking, and annotates the program with shape invariants consisting

of GRSs. Shape analysis in contrast keeps the original syntax of C and gen-

erates invariants by symbolic execution of the program. Shape analysis can

simulate the invariant-checking style by annotating invariants and check-

ing that they are a fixed-point of the analysis. The converse does not hold

however: CGRS has no mechanism for automatically generating shapes.

CGRS shapes must be annotated on the program, and the shape of

a structure in CGRS is invariant throughout the program. (The SPGT

approach can in general deal with shape-changing graph transformations

[3], but CGRS currently does not implement this feature). Shape analysis

in contrast can handle invariants that alter throughout the program.

Shape analysis has the advantage of a large amount of automation. How-

ever, the precision of the structures generated by analysis varies consider-

ably. The choice of instrumentation predicate is extremely important in de-

termining how quickly the algorithm will derive a three-value structure, and

how precise the resulting structures will be. Consequently, while analysis is

entirely automatic once the correct predicates have been chosen, selecting

and correctly defining these predicates may require considerable human in-

tervention. In contrast in CGRS annotations are of a precision determined

by the user.

The approach to semantics differs between CGRS and shape analysis.

CGRS has a single semantics for transformers, while the semantics of con-

structs in shape analysis depends on the abstract domain chosen. The two

can be seen as similar however, in that transformers must be defined using

the node and edge labels defined by the signature.

The abstract domain of shape analysis is restricted to predicates in three-

valued logic with reachability. This logic is sufficient to express structures

such as trees. However, it gives no means to express large-scale properties

such as tree balance, so we conjecture that it is less expressive than CGRS’s

shapes based on graph transformation. Shape analysis is guaranteed to

250

terminate however, as the domain of structures is finite. This is not true for

the CGRS shape-checking algorithm, which may diverge.

Separation logic has also been used as an abstract domain for shape

analysis. The Space Invader tool replaces three-valued logic with symbolic

heaps. These are formulas defined in a decidable fragment of separation

logic. As with three-valued logic, the analysis generates for each program

point an abstract representation of possible heaps. Termination is ensured

by a normalisation process based on entailment which replaces large formulas

with smaller formulas.

Just as the success of shape analysis using three-valued logic is sensitive

to the choice of instrumentation predicate, the success of analysis in Space

Invader is sensitive to the choice of abstract predicates and of normalisation

procedure used. Consequently the Space Invader tool has been targeted

closely on the domain of device drivers.

This has the advantage that drivers are written to a standard template

and the data structures they use are normally of a particular form. This

has allowed the tool to be very successful, in terms both of locating bugs

and of the size of programs analysed. Space invader claims verification of

shape-safety for 10,000 line programs [79], and location of substantial bugs

in real-world device drivers [5].

Symbolic heaps are closely related to the fragment of separation logic

that we use in Part III. See §8.3.2 for a discussion of this correspondence

between our fragment and symbolic heaps. As grammars based on hyperedge

replacement are known to be formally less expressive than grammars based

on double-pushout rewriting, this suggests that Space Invader’s abstract

domain is formally less expressive than the shapes used by CGRS.

A major advantage of both separation logic and three-valued logic shape

analysis is that they have been applied to a large number of real-world

problems, some of which are of considerable size [12, 79]. This has meant

that TVLA and Space Invader tools have been fine-tuned in the face of

experience, and that their tools have been developed to perform well when

applied to large blocks of code. This contrasts our own approach, CGRS,

which has only been applied to a small number of toy problems.

Our objective in CGRS has been to design a sound foundation language

on which further work can be based. Early shape analysis work, such as [54],

similarly dealt only with simple example problems. It will be the subject

251

of future work to apply CGRS to more substantial case-studies, and so to

fine-tune it based on practical experience. See §10.7 for a discussion of this.

11.4 Specifying structures by

graph transformation

We have described above the major approaches to verifying pointer struc-

tures in C-like languages using invariants. In this section we describe several

approaches that use graph transformation rules to analyse and verify of the

properties of classes of graphs.

High-level conditions [2, 41, 2] are an approach to defining the properties

of graphs based entirely on graphs and morphisms. Graph properties are

specified by conditions, which require the existence of certain combinations

of morphisms. Conditions can be negated and nested, giving a highly ex-

pressive system for specifying properties. These conditions are used in two

ways: to control the application of rules, and to specify invariants.

In [41] it is shown that conditions can be used in practice to specify the

pre and post-conditions of a graph program, in the sense of [42]. It is shown

that the weakest precondition of a graph program can be constructed. In [2]

a generalisation is presented that defines so-called program conditions that

relate objects between the start and end of a program.

High-level conditions differ from CGRS’s graph reduction systems in that

high-level conditions are a purely static, existential constraint. GRSs are

defined algorithmically, by reduction. A consequence of this is the weakest

preconditions for a high-level condition can be easily defined. In contrast, the

problem of shape-checking for GRSs is known to be undecidable. This also

suggests that GRSs are formally more expressive than high-level conditions.

The more algorithmic approach of CGRS has the advantage that every

GRS has an associated membership test. We demonstrate in Chapter 4

that certain GRSs can be tested for membership in linear time using graph

reduction. In addition, high-level conditions seem difficult to understand

without a deep understanding of graph transformation. Graph reduction

seems to have a stronger intuitive meaning as a means of specifying classes

of graphs.

Another approach to specifying and verifying the properties of graph

classes is the abstract graph transformation work of [68, 13]. In this work

252

classes of graphs are specified by a shape, consisting of a graph and a node

and edge multiplicity function. A concrete graph G is represented by a shape

S if there exists a shaping morphism s : G → S respecting the multiplicity

functions. A shape S is abstractly represented by a more abstract shape S′

if there is an abstraction morphism s′ : S → S′.

It is shown in this work that graph transformation rules over graphs

can be lifted to shapes. Consequently, for a given set of rules and initial

shape a transition system between shapes can be constructed reflecting all

the behaviors of the system of rules. In later work [13] a modal logic is

presented that is preserved and reflected by shaping and abstraction, making

it suitable for reasoning about abstract graph transformation.

This work on abstract graph transformation be seen as a high-level gen-

eralisation of shape analysis (see §11.3). In both approaches, a finite rep-

resentation is defined and transition system induced from some program

(in this case a set of graph transformation rules). However, unlike other

shape-analysis work, abstract graph transformation has not been applied to

real-world examples.

Abstract graph transformation differs from CGRS in much the same ways

as shape analysis. Invariants in abstract graph transformation are generated

by analysis, rather than checked. Invariant checking can be simulated how-

ever by supplying an invariant and checking whether it is a fixed-point of

the analysis. As with shape analysis, a major disadvantage is that precision

depends strongly on the choice of finite domain.

Unlike shapes in CGRS, abstract graphs do not come with a membership

test. Checking membership seems to require the construction of a matching

morphism between a concrete graph and abstract graph, which may be

expensive. In [13] it is suggested that the symbolic execution in abstract

graph transformation also suffers from problems with performance.

Abstract graph transformation are formally less expressive than graph

reduction systems. Abstract graphs as presented in [68] correspond to a

fragment of first-order logic, means that unaugmented abstract graphs are

weaker than even hyperedge replacement as a mechanism for specifying prop-

erties. Like shape analysis, to express interesting large-scale properties such

as reachability and cyclicity, extra annotations must be added to the ab-

stract graph. In addition, the analysis presented in [13] cannot in general

check whether annotated properties such as cyclicity are preserved.

253

Unlike CGRS, neither high-level conditions nor abstract graph transfor-

mation has been applied to pointer programming. However, both approaches

could in principle be applied to the problem of pointer verification. To do

this would require either (1) an extraction function from a pointer language

to a graph transformation system, or (2) the addition of constructs to the

pointer language corresponding to graph transformation rules.

In fact, both abstract graph transformation and high-level conditions

are to some degree orthogonal to the results we present for CGRS. We

have defined a semantics for graph-transformation constructs in a C-like

language, and an extraction function from graph transformation rules (see

§10.1). The rules produced by extraction could be checked by a system based

on abstract graph transformation or high-level conditions, rather than one

based on graph reduction. See 12.2.10 for a brief discussion of this idea.

254

Part V

Conclusion

255

Chapter 12

Conclusions and

further work

This thesis describes three pieces of research concerned with the use of graph

transformation rules for specifying and manipulating pointer structures. We

have described syntactic conditions ensuring efficient derivation for graph

transformation rules and applied them to the problem of graph recogni-

tion. We have defined a correspondence between hyperedge replacement

grammars and separation logic, an alternative approach to pointer safety.

Finally, we have defined the language CGRS that implements shape check-

ing using graph transformation rules. In this chapter we summarise and

evaluate our major contributions (§12.1) and suggest areas for further work

(§12.2).

12.1 Thesis summary

12.1.1 Fast graph transformation

Our first objective was to show that graph transformation rules can be made

an efficient mechanism for checking the properties of graph structures. To

achieve this aim, Part II describes defined a general framework for improving

the worst-case time complexity for individual rules and sequences of rules.

We then use this framework to achieve our objective, by defining two kinds

of fast reduction system with a linear-time membership checking algorithm.

Our approach is based on restricting rules and graphs using simple syn-

tactic conditions. We have defined conditions on rules that ensure an im-

256

proved worst-case execution time. We define two kinds of condition: con-

ditions requiring uniquely-labelled root nodes (Conditions 1, 2, and 3), and

conditions requiring roots (Conditions R1, R2, and R3).

We have shown that Conditions 1, 2, and 3 (§3.2) ensure linear-time

application of unrooted rules (Proposition 3.8 and Proposition 3.10). We

have shown that Conditions R1, R2, and R3 (§3.3) ensure constant-time

application of rooted rules (Proposition 3.15 and Proposition 3.17). In ad-

dition, we have shown that Condition 1 and conditions R1, R2 and R3

ensures linear-time termination for multi-step derivations (Theorem 3.23,

Proposition 3.18).

We have applied these conditions to the recognition of graph languages

by reduction to give two new classes of fast recognition systems - linear

LGRSs based on unrooted rules, and linear RGRSs based on rooted rules.

We have shown by example that these reduction systems can be used to

define a number of interesting non-context-free languages (§4.2). We have

shown that both LGRSs and RGRSs have a linear-time membership test

(Theorem 4.4, Theorem 4.21). However, LGRSs and RGRSs are of incom-

parable expressive power (Proposition 4.23 and Proposition 4.24).

The work presented in this part of the thesis proves formally that rules

under our syntactic conditions have an improved worst-case time complexity

over the general case. In this sense, our rules are ‘fast’. However, we have not

shown that our approach is faster than other approaches when it is applied

to any particular problem domain. An improved worst-case application time

does not imply that our approach will improve the application time for a

particular domain.

There are three reasons for this. For small rules, the cost of application

may be dominated by fixed costs, crowding out the benefits of our approach.

Also for particular domains, heuristic approaches may achieve better results

than our approach in most cases. Finally, we have focused purely on worst-

case results rather than on algorithm optimisations. Other systems may

perform better than ours due to better optimisation.

To show that our approach improves application times in practice (and

so to more fully justify the description of our approach as ‘fast graph trans-

formation’) we require empirical evidence. To do this, we also require an

implementation. The work on fast graph transformation presented in this

thesis exists entirely abstractly, while testing it will require the concrete ex-

257

ecution of real graph-transformation systems. We hope in future work to

develop and test more concrete instantiations of fast graph transformation

(see §12.2.1).

12.1.2 Hyperedge Replacement and separation logic

Our second objective was to relate approaches to shape safety based on graph

transformation to other shape safety approaches. Part III examines the

relationship between separation logic and heap-graph grammars based on

hyperedge replacement, and shows that our fragment of separation logic is of

corresponding expressiveness to heap-graph grammars. The correspondence

we have discovered fulfils our objective by illuminating the properties of

both hyperedge replacement and separation logic.

We have defined a fragment SL of separation logic and shown that that

formulas in this fragment are of equivalent power to hyperedge replacement

grammars. To do this, we have defined a translation function s from gram-

mars to formulas, and a translation function g from formulas to grammars.

We have also defined a bijective function α that maps from hyperedge re-

placement states to heap graphs.

We have proved our translation functions s and g correct with respect

to α. That is g ◦ α = α ◦ g (Theorem 7.6), and s ◦ α−1 = α−1 ◦ s (Theorem

7.10). Consequently, the fragment SL is of equivalent expressive power to

the class of heap-graph grammars, modulo α (Theorem 8.3)

Our fragment of separation logic inherits the inexpressibility properties

of hyperedge replacement, and we have described several languages that con-

sequently cannot be defined in our fragment. We have shown that hyperedge

replacement cannot be used to model full separation logic by showing that

the standard first-order logic constructs ∧, ¬ and true cannot be modelled

by a heap-graph grammars (§8.1). However, we have also shown that the

symbolic heaps in common use in the separation logic world are close to

our fragment, which suggests that our fragment is of practical utility, rather

than just a curiosity.

12.1.3 A language for shape safety

The third objective of this thesis was to show that graph transformation rules

can be used to verify the safety of pointer structures in a C-like pointer lan-

258

guage. Part IV of this thesis describes our language CGRS that adds graph

transformation constructs to C. CGRS fulfils our objective by merging the

quite different idioms of graph transformation and C into a single language.

Constructs in CGRS can be modelled as graph transformation rules, per-

mitting shape-safety checking using the SPGT approach [4, 3].

CGRS extends C with transformer functions resembling graph transfor-

mation rules, and shape-specifications resembling graph reduction systems.

We have defined a syntax for CGRS and given both small and large exam-

ples of CGRS constructs. We have shown by example that large pointer

rewrites can be clearly expressed using CGRS transformers (§9.3).

We have defined both a concrete and abstract semantics for CGRS con-

structs. The abstract semantics is defined by the function G, which extracts

graph transformation rules and GRSs from CGRS constructs. The concrete

semantics is given by the function C, which maps constructs to blocks of

C code. This concrete code defined functions corresponding to transformer

declarations, and also defines constructor functions for shapes.

We have shown that the CGRS concrete semantics given by C is cor-

rect with respect to the abstract semantics given by G and the abstraction

function βσ (Theorem 10.4 and Theorem 10.1). This means that, for a

given transformer function F and shape structure s, it is always true that

(βσ ◦ C[[F]])(s) = (G[[F]] ◦ βσ)(s).

We have define a notion of shape safety with respect to the shapes de-

fined by a CGRS program (Section 10.6). Any shape structure constructed

by a CGRS constructor function is shape-safe by construction (Theorem

10.5). Finally, we have shown that transformers can be checked statically to

determine whether they preserve shape-safety using the checking algorithm

described in [3] (Theorem 10.6)

While we have defined a mapping to C programs, and so abstractly

defined an implementation, CGRS has not been concretely implemented.

Examples given in this thesis have been hand-compiled to C using the trans-

lation given in Chapter 10. The resulting C programs have been compiled

using a C compiler, but no large-scale testing with real-world examples has

been undertaken.

We hope that CGRS forms a suitable basis for future research on shape

safety, and hope in future work to develop a practical and efficient imple-

mentation (see §10.7 for a discussion of this).

259

12.2 Further work

12.2.1 Experimental results for fast graph transformation

As discussed at the end of §12.1.1, we require experimental results to show

that our syntactic conditions on rules result in an improvement in application

times in practice. However, we expect that the results of these experiments

will depend strongly on (1) the choice of domain, and (2) the preexisting op-

timisations in the system. Experiments will therefore require careful choice

of a methodology in order to make them fair and representative.

As a starting point, we propose to take an existing system such as the

YAM compiler for the GP system [57] and adding support for fast graph

transformation. We may have to extend the language with annotations

denoting the root node, signature and so on. We can then compare the

system using our approach with the system without it. Applying our work

to a graph transformation benchmark, such as [76], may be a good way to

produce results that can be compared with other systems.

Experimental work of this kind will also illuminate possible ways of opti-

mising our approach. In this thesis we have prioritised clarity of explanation

above optimisation. For example, in §3.4 we said that the given version of

the algorithm Multistep-Apply is less efficient than an alternative (more

complex) version of the algorithm. Experimenting with fast graph transfor-

mation will give us an opportunity to optimise more fully, on the basis of

the sound theoretical results described in this thesis.

12.2.2 Relationship with special reduction systems

Section 5.3 examines in some detail the relationship between our approach

to fast graph transformation and special reduction systems [11, 1]. How-

ever, several questions remain unanswered. In particular, we have not de-

termined whether SRSs that include non-terminals are less powerful than

either LGRSs or RGRSs. We have conjectured that this is the case for both

LGRSs and RGRSs (end of §5.3). Proving or disproving this conjecture and

further investigating the relationship between fast recognition systems and

other approaches should be the subject of further work.

260

12.2.3 Practical application of the correspondence

At present the correspondence result between separation logic and hyperedge

replacement proved at the end of Part III are of mostly theoretical interest.

However, one aim in developing this correspondence is to apply results from

the graph transformation domain to the work on separation logic (and vice

versa). In future work we should try to develop more practical applications

of our correspondence. We have shown that our fragment of separation logic

is closely related to the symbolic heaps used in recent shape-checking work

(see §8.3.2). The shape-checking tools based on symbolic heaps are therefore

an obvious target for this work.

12.2.4 Inference between graph grammars

A large part of the recent success of separation logic for shape-checking has

been that it is natural to talk about inference between logical formulas.

This means rewriting of formulas can be reasoned about naturally. Graph

grammars in contrast have largely been studied as fixed objects, without

any notion of properties under mutation. It would be interesting to try to

develop some notion of inference for graph grammars. Such work could begin

by examining the proof systems developed for symbolic heaps [8] and apply

them to graph grammars using our mapping to hyperedge replacement.

12.2.5 Separation logic and context-sensitive

graph transformation

We have conjectured in §8.1.4 that a fragment of separation logic that in-

cludes both let-statements and the separating conjunction −∗ could simulate

grammars based on context-sensitive graph transformation. This raises sev-

eral interesting questions. To begin with, can we simulate full DPO gram-

mars using this approach, or only somewhere between DPO and hyperedge-

replacement grammars? Also, can we construct a mapping from separation

logic formulas with separating implication to the class of DPO grammars

over heap-graphs? Solving this problem would provide interesting insights

into full separation logic, as double-pushout graph rewriting is very well

understood formally.

261

12.2.6 Implementation and optimisation of CGRS

CGRS currently lacks an implementation. See §10.7 for a discussion of the

possibilities for implementing and optimising CGRS in future work.

12.2.7 Reducing the distance from CGRS to C

In designing CGRS we have tried to conform to the C programming model

(see §9.2.1). However, both the structure and semantics of transformer

functions still differs substantially from normal C programs. To program

in CGRS requires an understanding of context-sensitive graph transforma-

tion rules. This substantially increases the cost to programmers of using

the language. It should be the subject of further work to make GRS-based

checking more acceptable to C programmers, by matching more closely their

expectations. The approach of assigning a graph-transformation semantics

to C-like constructs (prototyped in the Pasta language [72]) may be a pro-

ductive direction to pursue.

12.2.8 Improving the modularity of shape declarations

CGRS lacks modularity. Shape declarations have to be included in full in

every program, and there is no mechanism for combining shapes. In future

work we should make CGRS more modular. The shape of a data structure

should be abstracted from the type of data stored in it. This would allow

reuse of shapes between programs, and so would allow the development

of shape-safe libraries. Hiding transformer declarations in libraries would

also make CGRS more acceptable to programmers unfamiliar with graph

transformation.

A more complex form of modularity would be definition of shapes by

composition of existing shapes. Currently such composed shapes (e.g. lists

of trees) have to be constructed by hand. However, in principle such lan-

guages could be defined as the composition of existing graph transformation

systems. To compose languages in this way would require us to develop a

more composable notion of a graph reduction system. Shape composition

may also provide a more compositional approach to shape verification, if

each composed shape can be verified separately.

262

12.2.9 Applying fast graph transformation to CGRS

At the moment, shape-safety checking in CGRS is performed statically. As

we have shown, in general it is expensive to check the properties specified

by a GRS by reduction. However, linear LGRSs and linear RGRSs have

a linear-time membership checking algorithm. This could be used to pro-

vide an efficient run-time shape safety checker for CGRS. This would run

periodically to test whether shape safety properties have been preserved.

Such a system would be natural complement to the existing static checking

algorithm. When developing a program, run-time checking could be used

for debugging. Once the program has been developed, the static checking

algorithm (or other proof techniques, see §11.4) could then be used to verify

that the program is guaranteed shape-safe.

12.2.10 Other shape-checking approaches

CGRS adds two new notions to C: transformer functions for defining rewrites,

and shape specifications for defining graph properties. These two are some-

what orthogonal: transformers could be used by a program without shape

restrictions. It would be interesting to apply a different approach to shape

specification to CGRS. In §11.4 we discussed two other approaches for defin-

ing the properties of graph transformation rules: high-level conditions and

abstract graph transformation. To apply these approaches to CGRS, the

syntax of shapes would need to be changed to reflect the different annota-

tion methods. The semantics of shape structures might also have to change.

We expect however, that a large amount of our work could be reused CGRS

and the new languages based on these approaches.

263

Appendix A

Balanced binary trees are

not MS-expressible

The proof given in this appendix show that the language of balanced binary

trees, as defined in Chapter 4, cannot be defined by any formula in monadic

second-order logic, as defined in [17]. This proof is based on Courcelle’s

proof that reachability is not MS-expressible (Proposition 5.2.9 of [17]).

Enough background on monadic second-order logic is given here so that

the proof should be understandable on its own, but giving complete defi-

nition for every construct would require an unreasonably large amount of

space. Consequently definitions in this appendix are somewhat terser than

elsewhere in the thesis, and the reader unfamiliar with monadic second-order

logic may find it useful to refer to [17].

Formulas in monadic second-order logic define the properties of relational

structures. A structure S = 〈DS , (RS)R∈R〉 defined over a set of relation

symbols R consists of a domain DS and a relation RS over DS for each

R ∈ R. In the results below, if u is a string, then we write ‖ u ‖ to stand for

the string structure. The relation symbols are sucS, defining the sequence

of positions, and an iyS defining the character held at each position in the

string. More formally,

DS = {1, . . . , n} if u has length n;

sucS = {(1, 2), (2, 3), . . . , (n − 1, n)};

i ∈ labyS iff y is the ith letter of u.

We first prove the result that balanced binary trees are not MS1-definable.

MS1 is the class of monadic second-order logic formulas without an incidence

264

predicate, that is, a predicate expressing the fact that a particular edge is

incident to a particular node. The proof depends on the following result,

which Courcelle attributes to Büchi and Elgot [17].

Theorem A.1. If L ⊆ {a, b}∗ is the set of words u such that ‖ u ‖ |= ̺

where ̺ is a closed MS1-formula, then L is a regular language. (Büchi &

Elgot)

Proposition A.2. No formula exists in MS1 that defines the class of bal-

anced binary trees.

Proof. Assume we have an MS1-formula β that is satisfied by a graph iff it

is a balanced binary tree.

Consider the language of strings of the form ancbm. We associate each

string wn,m = anbm with a graph Bn,m with vertices {−n, . . . ,−1, 0, 1, . . . ,m}.

The left-hand ‘a’ characters associate with vertices {−n, . . . ,−1}, and the

right-hand ‘b’ characters associate with vertices {0, 1, . . . ,m}. There is an

edge in Bn,m from vertex 0 to vertices 1 and -1, and a vertex from each

vertex greater than zero to each succeeding vertex, and from each vertex

less than zero to the preceding vertex. A graph Bn,m is a balanced binary

tree iff m = n + 1.

The formula η that encodes in terms of a string structure the edge rela-

tion for a balanced binary tree:

η(x1, x2) = ((laba(x1) ∧ laba(x2) ∧ suc(x2, x1))

∨ (labb(x1) ∧ labb(x2) ∧ suc(x1, x2))

∨ (labb(x1) ∧ laba(x2) ∧ suc(x2, x1))

The formula η encodes the edge relation for the graph Bn,m in terms

of a string wn,m. We can therefore construct the formula β[η/edg] that is

satisfied if and only if a string has the form anbn+1.

Bn,m |= β iff m = n + 1 iff ‖ wn,m ‖ |= β[η/edg]

But this results in a contradiction. The language of strings wn,(n+1) that

satisfying β[η/edg] is non-regular, contradicting Theorem A.1. Our initial

assumption of the existence of β must therefore be false.

Remark A.1. The above proof is for balanced binary trees constructed from

unlabelled nodes and edges. However, we can extend the same proof so as

265

to prove the result for balanced binary tree graphs with labelled nodes and

edges. We simply replace the η formula with separate formulas for distinct

edge labels, and add node-labelling functions.

We have proved that no formula for balanced binary trees exists in MS1,

the class of MSOL formulas without an incidence predicate. Courcelle shows

in [17] that MS2, the class of monadic second-order logic formulas with such

an incidence predicate, is formally more expressive than MS1. However, he

also gives the following result, which allows us to apply Proposition A.2 to

MS2 formulas.

Lemma A.3 (MS1 and MS2 expressiveness). Let C be a class of: (1) planar

directed simple graphs, or (2) directed simple graphs of degree at most k, or

(3) finite directed simple graphs of tree-width at most k. A property of graphs

in C is MS2-expressible iff it is MS1-expressible (Courcelle, [17, p.338]).

Proposition A.4. No formula exists in MS2 that defines the class of bal-

anced binary trees.

Proof. The class of balanced binary trees satisfies all three cases for the

applicability of lemma A.3, so as a consequence of Proposition A.2 balanced

binary trees are also not MS2-expressible.

266

Bibliography

[1] S. Arnborg, B. Courcelle, A. Proskurowski, and D. Seese. An algebraic

theory of graph reduction. Journal of the ACM, 40(5):1134–1164, 1993.

(Cited on page 19, 58, 59, 99, 102, 103, 104, 105, 260)

[2] K. Azab and A. Habel. High-level programs and program conditions.

In H. Ehrig, R. Heckel, G. Rozenberg, and G. Taentzer, editors, ICGT,

volume 5214 of Lecture Notes in Computer Science, pages 211–225.

Springer, 2008. (Cited on page 252)

[3] A. Bakewell, D. Plump, and C. Runciman. Checking the shape safety

of pointer manipulations. In 7th International Seminar on Relational

Methods in Computer Science, Revised Selected Papers, volume 3051

of Lecture Notes in Computer Science, pages 48–61. Springer, 2004.

(Cited on page 17, 18, 177, 181, 182, 205, 243, 250, 259)

[4] A. Bakewell, D. Plump, and C. Runciman. Specifying pointer structures

by graph reduction. In Int. Workshop Applications of Graph Transfor-

mations With Industrial Relevance (AGTIVE 2003), Revised Selected

and Invited Papers, volume 3062 of Lecture Notes in Computer Science,

pages 30–44, 2004. (Cited on page 17, 18, 66, 68, 77, 84, 93, 94, 97,

104, 177, 179, 186, 194, 246, 259)

[5] J. Berdine, C. Calcagno, B. Cook, D. Distefano, P. W. O’Hearn,

T. Wies, and H. Yang. Shape analysis for composite data structures. In

International Conference on Computer-Aided Verification, pages 178–

192, 2007. (Cited on page 173, 251)

[6] J. Berdine, C. Calcagno, and P. O’Hearn. Symbolic execution with

separation logic. In Asian Symposium on Programming Languages and

267

Systems, volume 3780 of Lecture Notes in Computer Science, pages

52–68, 2005. (Cited on page 111)

[7] J. Berdine, C. Calcagno, and P. W. O’Hearn. Smallfoot: Modular auto-

matic assertion checking with separation logic. In F. S. de Boer, M. M.

Bonsangue, S. Graf, and W. P. de Roever, editors, FMCO, volume 4111

of Lecture Notes in Computer Science, pages 115–137. Springer, 2005.

(Cited on page 248)

[8] J. Berdine, C. Calcagno, and P. W. O’Hearn. Smallfoot: Modular

automatic assertion checking with separation logic. In In Proceedings

of FMCO’05, volume 4111 of Lecture Notes in Computer Science, pages

115–137. Springer, 2005. (Cited on page 261)

[9] L. Birkedal, N. Torp-Smith, and J. Reynolds. Local reasoning about a

copying garbage collector. In Proceedings of the 31st ACM symposium

on Principles of Programming Languages, pages 1–58, 2004. (Cited on

page 248)

[10] H. L. Bodlaender. A tourist guide through treewidth. Acta Cybernetica,

11:1–21, 1993. (Cited on page 103)

[11] H. L. Bodlaender and B. van Antwerpen-de Fluiter. Reduction algo-

rithms for graphs of small treewidth. Inf. Comput., 167(2):86–119, 2001.

(Cited on page 59, 99, 101, 102, 103, 104, 260)

[12] I. Bogudlov, T. Lev-Ami, T. W. Reps, and M. Sagiv. Revamping

tvla: Making parametric shape analysis competitive. In W. Damm and

H. Hermanns, editors, CAV, volume 4590 of Lecture Notes in Computer

Science, pages 221–225. Springer, 2007. (Cited on page 250, 251)

[13] I. B. Boneva, A. Rensink, M. E. Kurban, and J. Bauer. Graph abstrac-

tion and abstract graph transformation. Technical Report TR-CTIT-

07-50, University of Twente, Enschede, July 2007. (Cited on page 252,

253)

[14] M. Bozga, R. Iosif, and Y. Lakhnech. Storeless semantics and alias

logic. In PEPM, pages 55–65. ACM, 2003. (Cited on page 248)

[15] C. Calcagno, D. Distefano, P. W. O’Hearn, and H. Yang. Beyond

reachability: Shape abstraction in the presence of pointer arithmetic.

268

In 13th International Symposium on Static Analysis, volume 4134 of

Lecture Notes in Computer Science, pages 182–203, 2006. (Cited on

page 173)

[16] C. Calcagno, P. Gardner, and U. Zarfaty. Context logic as modal logic:

completeness and parametric inexpressivity. In Proceedings of the 34th

ACM SIGPLAN-SIGACT Symposium on Principles of Programming

Languages, pages 123–134, New York, NY, USA, 2007. ACM. (Cited

on page 175)

[17] B. Courcelle. The expression of graph properties and graph transforma-

tions in monadic second-order logic. In Handbook of Graph Grammars

and Computing by Graph Transformation, pages 313–400. World Sci-

entific, 1997. (Cited on page 103, 264, 265, 266)

[18] R. Diestel. Graph theory. Springer, 2000. (Cited on page 104)

[19] D. Distefano, J.-P. Katoen, and A. Rensink. Who is pointing when to

whom? In K. Lodaya and M. Mahajan, editors, FSTTCS, volume 3328

of Lecture Notes in Computer Science, pages 250–262. Springer, 2004.

(Cited on page 249)

[20] D. Distefano, P. W. O’Hearn, and H. Yang. A local shape analysis

based on separation logic. In 12th International Conference on Tools

and Algorithms for the Construction and Analysis of Systems, volume

3920 of Lecture Notes in Computer Science, pages 287–302. Springer,

2006. (Cited on page 17, 111, 173)

[21] M. Dodds. From separation logic to hyperedge replacement and back

(extended abstract). In Proc. International Conference on Graph

Transformation (ICGT 2008), volume 5214/2008 of Lecture Notes in

Computer Science, pages 484–486. Springer, 2008. (Cited on page 22)

[22] M. Dodds and D. Plump. Extending C for checking shape safety. In

Proc. Graph Transformation for Verification and Concurrency (GT-

VC 2005), volume 154(2) of Electronic Notes in Theoretical Computer

Science, pages 95–112. Elsevier, 2006. (Cited on page 22)

[23] M. Dodds and D. Plump. Graph transformation in constant time.

In Proc. International Conference on Graph Transformation (ICGT

269

2006), volume 4178 of Lecture Notes in Computer Science, pages 367–

382. Springer, 2006. (Cited on page 22)

[24] M. Dodds and D. Plump. From separation logic to hyperedge replace-

ment and back. In Proc. Doctoral Symposium at the International Con-

ference on Graph Transformation, volume 16 of Electronic Communi-

cations of the EASST. European Association of Software Science and

Technology, 2008. (Cited on page 22)

[25] H. Dörr. Bypass strong V-structures and find an isomorphic labelled

subgraph in linear time. In W. Mayr, Ernst, G. Schmidt, and G. Tin-

hofer, editors, Graph-Theoretic Concepts in Computer Science, volume

903 of Lecture Notes in Computer Science, pages 305–318, 1995. (Cited

on page 18, 100)

[26] H. Dörr. Efficient Graph Rewriting and its Implementation, volume 922

of Lecture Notes in Computer Science. Springer, 1995. (Cited on page

18, 68, 100, 101)

[27] F. Drewes, A. Habel, and H.-J. Kreowski. Hyperedge replacement graph

grammars. In G. Rozenberg, editor, Handbook of Graph Grammars and

Computing by Graph Transformation. Volume I: Foundations, chap-

ter 2, pages 95–162. World Scientific, 1997. (Cited on page 29, 31, 66,

76, 131, 135, 144, 148, 149, 166, 168)

[28] J. Engelfriet. Context-free graph grammars. In Handbook of formal

languages, vol. 3: beyond words, pages 125–213. Springer, New York,

NY, USA, 1997. (Cited on page 174)

[29] J. Engelfriet and G. Rozenberg. Node replacement graph grammars. In

G. Rozenberg, editor, Handbook of Graph Grammars and Computing by

Graph Transformation. Volume I: Foundations, chapter 1, pages 1–94.

World Scientific, 1997. (Cited on page 76)

[30] C. Forgy et al. RETE: A fast algorithm for the many pattern/many ob-

ject pattern match problem. Artificial Intelligence, 19(1):17–37, 1982.

(Cited on page 102)

[31] P. Fradet and D. L. Métayer. Shape types. In Proceedings of the 1997

ACM Symposium on Principles of Programming Languages, pages 27–

39. ACM Press, 1997. (Cited on page 20, 182, 242, 245)

270

[32] P. Fradet and D. L. Métayer. Structured gamma. Science of Computer

Programming, 31(2-3):263–289, 1998. (Cited on page 182)

[33] J. J. Fu. Linear matching-time algorithm for the directed graph isomor-

phism problem. In Proceedings of the 6th International Symposium on

Algorithms, volume 1004 of Lecture Notes in Computer Science, pages

409–417. Springer, 1995. (Cited on page 100)

[34] J. J. Fu. Pattern matching in directed graphs. In Proc. Combinatorial

Pattern Matching, volume 937 of Lecture Notes in Computer Science,

pages 64–77. Springer, 1995. (Cited on page 100)

[35] M. R. Garey and D. S. Johnson. Computers and Intractability : A

Guide to the Theory of NP-Completeness. W.H. Freeman and Company,

January 1979. (Cited on page 39, 73)

[36] R. Geis, G. V. Batz, D. Grund, S. Hack, and A. M. Szalkowski. Gr-

gen: A fast spo-based graph rewriting tool. In A. Corradini, H. Ehrig,

U. Montanari, L. Ribeiro, and G. Rozenberg, editors, Proc. Inter-

national Conference on Graph Transformation (ICGT 2006), Lecture

Notes in Computer Science, pages 383 – 397. Springer, 2006. (Cited on

page 99, 100)

[37] Y. Gurevich and J. K. Huggins. The semantics of the c programming

language. In Selected Papers from CSL ’92, volume 702 of Lecture Notes

in Computer Science, pages 274–308. Springer, 1993. (Cited on page

222)

[38] A. Habel. Hyperedge Replacement: Grammars and Languages, volume

643 of Lecture Notes in Computer Science. Springer, 1992. (Cited on

page 29, 31, 132, 149, 167, 172, 173)

[39] A. Habel and H.-J. Kreowski. Filtering hyperedge-replacement through

compatible properties. In M. Nagl, editor, WG, volume 411 of Lecture

Notes in Computer Science, pages 107–120. Springer, 1989. (Cited on

page 115, 165)

[40] A. Habel, J. Müller, and D. Plump. Double-pushout graph transforma-

tion revisited. Mathematical. Structures in Comp. Sci., 11(5):637–688,

2001. (Cited on page 185)

271

[41] A. Habel and K.-H. Pennemann. Satisfiability of high-level conditions.

In A. Corradini, H. Ehrig, U. Montanari, L. Ribeiro, and G. Rozenberg,

editors, ICGT, volume 4178 of Lecture Notes in Computer Science,

pages 430–444. Springer, 2006. (Cited on page 252)

[42] A. Habel and D. Plump. Computational completeness of programming

languages based on graph transformation. In F. Honsell and M. Mic-

ulan, editors, FoSSaCS, volume 2030 of Lecture Notes in Computer

Science, pages 230–245. Springer, 2001. (Cited on page 252)

[43] A. Habel and D. Plump. Relabelling in graph transformation. In Proc.

International Conference on Graph Transformation (ICGT 2002), vol-

ume 2505 of Lecture Notes in Computer Science, pages 135–147.

Springer, 2002. (Cited on page 26, 27)

[44] J. G. Henriksen, J. L. Jensen, M. E. Jørgensen, N. Klarlund, R. Paige,

T. Rauhe, and A. Sandholm. MONA: Monadic second-order logic in

practice. In E. Brinksma, R. Cleaveland, K. G. Larsen, T. Margaria,

and B. Steffen, editors, Tools and Algorithms for the Construction and

Analysis of Systems, volume 1019 of Lecture Notes in Computer Sci-

ence, pages 89–110. Springer, 1995. (Cited on page 247)

[45] International Organization for Standardization. ISO C standard 1999.

Technical report, 1999. ISO/IEC 9899:1999 draft. (Cited on page 209)

[46] S. Ishtiaq and P. W. O’Hearn. BI as an assertion language for mutable

data structures. In Proceedings of the 2001 ACM Symposium on Prin-

ciples of Programming Languages, volume 36(3) of ACM SIGPLAN

Notices. ACM, March 2001. (Cited on page 111, 247)

[47] B. Jeannet, A. Loginov, T. W. Reps, and S. Sagiv. A relational ap-

proach to interprocedural shape analysis. In R. Giacobazzi, editor,

SAS, volume 3148 of Lecture Notes in Computer Science, pages 246–

264. Springer, 2004. (Cited on page 250)

[48] B. W. Kernighan and D. M. Ritchie. C Programming Language (2nd

Edition). Prentice Hall, 1988. (Cited on page 222)

[49] N. Klarlund and M. I. Schwartzbach. Graph types. In Proceedings of

the 1993 ACM Symposium on Principles of Programming Languages,

pages 196–205. ACM, 1993. (Cited on page 246)

272

[50] D. E. Knuth. The Art of Computer Programming, Volume III: Sorting

and Searching. Addison-Wesley, 1973. (Cited on page 193)

[51] K.-J. Lange and E. Welzl. String grammars with disconnecting. In

Fundamentals of Computation Theory, volume 199 of Lecture Notes in

Computer Science, pages 249–256. Springer, 1985. (Cited on page 76)

[52] O. Lee, H. Yang, and K. Yi. Automatic verification of pointer pro-

grams using grammar-based shape analysis. In Proceedings of the 14th

European Symposium on Programming, volume 3444 of Lecture Notes

in Computer Science, pages 124–140. Springer, April 2005. (Cited on

page 111, 113, 117, 118, 119, 120, 121, 122, 165, 175)

[53] T. Lev-Ami, R. Manevich, and S. Sagiv. Tvla: A system for generating

abstract interpreters. In R. Jacquart, editor, IFIP Congress Topical

Sessions, pages 367–376. Kluwer, 2004. (Cited on page 250)

[54] T. Lev-Ami and S. Sagiv. TVLA: A system for implementing static

analyses. In SAS ’00: Proceedings of the 7th International Symposium

on Static Analysis, pages 280–301. Springer, 2000. (Cited on page 249,

251)

[55] T. Lev-Ami and S. Sagiv. Tvla: A system for implementing static

analyses. In J. Palsberg, editor, SAS, volume 1824 of Lecture Notes in

Computer Science, pages 280–301. Springer, 2000. (Cited on page 250)

[56] E. Lozes. Separation logic preserves the expressive power of classical

logic. In Proceedings of the 2st Workshop on Semantics, Program Anal-

ysis, and Computing Environments for Memory Management, 2004.

Informal proceedings. (Cited on page 175)

[57] G. Manning and D. Plump. The York abstract machine. In R. Bruni

and D. Várro, editors, Proc. Graph Transformation and Visual Mod-

elling Techniques (GT-VMT 2006), Vienna, Austria, April 1–2, 2006,

volume 211 of Electronic Notes in Theoretical Computer Science, pages

231–240. Elsevier, 2006. (Cited on page 37, 99, 260)

[58] A. Møller and M. I. Schwartzbach. The pointer assertion logic engine.

In Proceedings of the 2001 ACM Conference on Programming Language

273

Design and Implementation, volume 36(5) of SIGPLAN Notices. ACM,

2001. (Cited on page 246)

[59] J. Müller and R. Geis. Speeding up graph transformation through auto-

matic concatenation of rewrite rules. Technical report, Institut für Pro-

grammstrukturen und Datenorganisation, Universität Karlsruhe, 2007.

(Cited on page 99, 100)

[60] H. R. Neilson and F. Nielson. Semantics with Applications: An Appe-

tizer. Wiley Professional Computing, 2005. (Cited on page 223, 225)

[61] M. Norrish. An abstract dynamic semantics for C. Technical report,

Computer Laboratory, University of Cambridge, Sept. 27 1997. (Cited

on page 222)

[62] Object Management Group. Unified Modeling Language (UML) Spec-

ification, version 2.0, 2009. (Cited on page 33)

[63] D. Plump. Hypergraph rewriting: critical pairs and undecidability of

confluence. In M. R. Sleep, M. J. Plasmeijer, and M. C. J. D. van

Eekelen, editors, Term graph rewriting: theory and practice, pages 201–

213. Wiley, Chichester, UK, UK, 1993. (Cited on page 72, 80, 87)

[64] D. Plump. Confluence of graph transformation revisited. In A. Mid-

deldorp, V. van Oostrom, F. van Raamsdonk, and R. C. de Vrijer,

editors, Processes, Terms and Cycles, volume 3838 of Lecture Notes in

Computer Science, pages 280–308. Springer, 2005. (Cited on page 72)

[65] D. Plump and S. Steinert. Towards graph programs for graph algo-

rithms. In Proc. International Conference on Graph Transformation

(ICGT 2004), volume 3256 of Lecture Notes in Computer Science, pages

128–143. Springer, 2004. (Cited on page 37, 184)

[66] A. Rensink. GROOVE: A graph transformation tool set for

the simulation and analysis of graph grammars. Available at

http://www.cs.utwente.nl/~groove, 2003. (Cited on page 37)

[67] A. Rensink. The GROOVE simulator: A tool for state space generation.

In J. Pfalz, M. Nagl, and B. Böhlen, editors, Applications of Graph

Transformations with Industrial Relevance (AGTIVE), volume 3062 of

274

http://www.cs.utwente.nl/~groove

Lecture Notes in Computer Science, pages 479–485. Springer-Verlag,

2004. (Cited on page 37)

[68] A. Rensink and D. Distefano. Abstract graph transformation. Electr.

Notes Theor. Comput. Sci., 157(1):39–59, 2006. (Cited on page 33, 252,

253)

[69] J. C. Reynolds. Separation logic: A logic for shared mutable data

structures. In Proceedings of the Seventeenth Annual IEEE Symposium

on Logic in Computer Science, 2002. (Cited on page 14, 17, 111, 112,

113, 114, 247)

[70] N. Rinetzky and S. Sagiv. Interprocedural shape analysis for recursive

programs. In R. Wilhelm, editor, CC, volume 2027 of Lecture Notes in

Computer Science, pages 133–149. Springer, 2001. (Cited on page 250)

[71] G. Rozenberg, editor. Handbook of Graph Grammars and Computing

by Graph Transformation. World Scientific, 1996. (Cited on page 15)

[72] C. Runciman. Pasta shell: revision and first implementation. SPGT

project memo, Department of Computer Science, University of York,

2002. (Cited on page 262)

[73] Agg development team. The Agg 1.4.0 Development Envi-

ronment: The User Manual. Technische Universität Berlin.

http://tfs.cs.tu-berlin.de/agg. (Cited on page 33)

[74] É.-J. Sims. Extending separation logic with fixpoints and postponed

substitution. Theoretical Computer Science, 351(2):258–275, 2006.

(Cited on page 111, 113, 117, 118, 165)

[75] A. Tarski. A lattice-theoretical fixpoint theorem and its applications.

Pacific Journal of Mathematics, 5:285–309, 1955. (Cited on page 120)

[76] G. Varró, A. Schürr, and D. Varró. Benchmarking for graph transforma-

tion. In Proc. of the 2005 IEEE Symposium on Visual Languages and

Human-Centric Computing, pages 79–88, Dallas, Texas, USA, Septem-

ber 2005. (Cited on page 260)

[77] G. Varró and D. Varró. Graph Transformation with Incremental Up-

dates. Electronic Notes in Theoretical Computer Science, 109:71–83,

2004. (Cited on page 102, 103)

275

http://tfs.cs.tu-berlin.de/agg

[78] H. Yang. An example of local reasoning in BI pointer logic: the Schorr-

Waite graph marking algorithm. In Proceedings of the 1st Workshop on

Semantics, Program Analysis, and Computing Environments for Mem-

ory Management, Jan 2001. Informal proceedings. (Cited on page 248)

[79] H. Yang, O. Lee, J. Berdine, C. Calcagno, B. Cook, D. Distefano, and

P. O’Hearn. Scalable shape analysis for systems code. In International

Conference on Computer-Aided Verification, volume 5123 of Lecture

Notes in Computer Science, pages 385–398. Springer, 2008. (Cited on

page 173, 251)

276

	I Introduction and preliminaries
	Introduction
	Background and motivation
	Contribution
	Thesis structure
	Publication history

	Preliminaries
	Graphs and morphisms
	Double-pushout graph rewriting
	Hyperedge-replacement graph rewriting
	Graph signatures

	II Fast graph transformation and recognition
	Fast graph transformation
	The problems of graph transformation
	Fast left-connected graph transformation
	Fast rooted graph transformation
	Multi-step graph transformation

	Efficient graph recognition
	Recognition by rooted reduction
	Non-context-free RGRS languages
	Recognition by left-connected reduction
	Comparison between LGRSs and RGRSs
	Developing and validating GRSs

	Other approaches tofast graph transformation
	Efficient direct derivations
	Efficient multi-step derivation
	Efficient recognition and special reduction systems

	III Graph grammars and separation logic
	Semantics of formulas and grammars
	Separation logic syntax and semantics
	Flattening separation logic formulas
	Heap-graphs and mapping between domains
	Heap-graph grammars and source normalisation

	Mapping between formulas and grammars
	Intuitive relationship
	Mapping from formulas to grammars
	Proving the correctness of mapping g
	Mapping from grammars to formulas
	Proving the correctness of mapping s

	Consequences and limitations
	Inexpressible separation logic operators
	Extending the heap model
	Consequences of the correspondence
	Other related work

	IV A language for shape safety
	CGRS: A language for shape safety
	Safe pointers by graph transformation
	CGRS: a language for safe pointers
	Example: tree insertion and rebalancing
	Code size in CGRS

	Semantics of CGRS and shape safety
	Extraction of GRSs and rules from CGRS
	Translating CGRS to C
	Syntax and semantics of C
	Translating from memory states to graphs
	Correctness of translations
	Shape safety guarantees in CGRS
	Implementing and optimising CGRS

	Other approaches to shape safety
	Shape types and structured gamma
	Specifying structures using logic
	Shape analysis
	Specifying structures by graph transformation

	V Conclusion
	Conclusions and further work
	Thesis summary
	Further work

	Balanced binary trees are not MS-expressible
	Bibliography

